Chytridiomycosis, Amphibian Extinctions, and Lessons for the Prevention of Future Panzootics

Centre for Innovative Conservation Strategies, School of Environment, Griffith University, Gold Coast, QLD, Australia.
EcoHealth (Impact Factor: 2.45). 06/2009; 6(1):6-10. DOI: 10.1007/s10393-009-0228-y
Source: PubMed


The human-mediated transport of infected amphibians is the most plausible driver for the intercontinental spread of chytridiomycosis, a recently emerged infectious disease responsible for amphibian population declines and extinctions on multiple continents. Chytridiomycosis is now globally ubiquitous, and it cannot be eradicated from affected sites. Its rapid spread both within and between continents provides a valuable lesson on preventing future panzootics and subsequent erosion of biodiversity, not only of amphibians, but of a wide array of taxa: the continued inter-continental trade and transport of animals will inevitably lead to the spread of novel pathogens, followed by numerous extinctions. Herein, we define and discuss three levels of amphibian disease management: (1) post-exposure prophylactic measures that are curative in nature and applicable only in a small number of situations; (2) pre-exposure prophylactic measures that reduce disease threat in the short-term; and (3) preventive measures that remove the threat altogether. Preventive measures include a virtually complete ban on all unnecessary long-distance trade and transport of amphibians, and are the only method of protecting amphibians from disease-induced declines and extinctions over the long-term. Legislation to prevent the emergence of new diseases is urgently required to protect global amphibian biodiversity.

Download full-text


Available from: Jean-Marc Hero, Oct 09, 2015
33 Reads
  • Source
    • "There are also several newly discovered pathogens or diseases that have resulted in population declines, and global extinctions of several species. Examples include Batrachochytrium dendrobatidis, which causes a cutaneous fungal infection of amphibians and is linked to declines of amphibians globally (Kriger and Hero 2009); recently discovered Pseudogymnoascus (Geomyces) destructans , the etiologic agent of white nose syndrome which has caused precipitous declines of North American bat species (Blehert et al. 2011); and Tasmanian Devil facial tumor disease, an infectious cancer threatening the Tasmanian devil with extinction (McCallum and Jones 2006). Of increasing concern are these novel pathogens that have emerged as they are hard to anticipate, particularly devastating to wildlife populations, challenging to manage, and may result in ecological ripple effects that are difficult to predict. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The consequences of wildlife emerging diseases are global and profound with increased burden on the public health system, negative impacts on the global economy, declines and extinctions of wildlife species, and subsequent loss of ecological integrity. Examples of health threats to wildlife include Batrachochytrium dendrobatidis, which causes a cutaneous fungal infection of amphibians and is linked to declines of amphibians globally; and the recently discovered Pseudogymnoascus (Geomyces) destructans, the etiologic agent of white nose syndrome which has caused precipitous declines of North American bat species. Of particular concern are the novel pathogens that have emerged as they are particularly devastating and challenging to manage. A big science approach to wildlife health research is needed if we are to make significant and enduring progress in managing these diseases. The advent of new analytical models and bench assays will provide us with the mathematical and molecular tools to identify and anticipate threats to wildlife, and understand the ecology and epidemiology of these diseases. Specifically, new molecular diagnostic techniques have opened up avenues for pathogen discovery, and the application of spatially referenced databases allows for risk assessments that can assist in targeting surveillance. Long-term, systematic collection of data for wildlife health and integration with other datasets is also essential. Multidisciplinary research programs should be expanded to increase our understanding of the drivers of emerging diseases and allow for the development of better disease prevention and management tools, such as vaccines. Finally, we need to create a National Fish and Wildlife Health Network that provides the operational framework (governance, policies, procedures, etc.) by which entities with a stake in wildlife health cooperate and collaborate to achieve optimal outcomes for human, animal, and ecosystem health.
    EcoHealth 10/2013; 10(4). DOI:10.1007/s10393-013-0880-0 · 2.45 Impact Factor
  • Source
    • "Bd has been reported from Asia, Australia, Europe, Africa and America [19,22]. However, in Asia there are comparatively recent reports [23-30] and severe population declines have not been reported from the wild. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The Western Ghats of India harbors a rich diversity of amphibians with more than 77% species endemic to this region. At least 42% of the endemic species are threatened due to several anthropogenic stressors. However, information on amphibian diseases and their impacts on amphibian populations in this region are scarce. We report the occurrence of Batrachochytridium dendrobatidis (Bd), an epidermal aquatic fungal pathogen that causes chytridiomycosis in amphibians, from the Western Ghats. In the current study we detected the occurrence of a native Asian Bd strain from three endemic and threatened species of anurans, Bombay Night Frog Nyctibatrachus humayuni, Leith's Leaping Frog Indirana leithii and Bombay Bubble Nest Frog Raorchestes bombayensis, for the first time from the northern Western Ghats of India based on diagnostic nested PCR, quantitative PCR, DNA sequencing and histopathology. While, the Bd infected I. leithii and R. bombayensis did not show any external symptoms, N. humayuni showed lesions on the skin, browning of skin and sloughing. Sequencing of Bd 5.8S ribosomal RNA gene, and the ITS1 and ITS2 regions, revealed that the current Bd strain is related to a haplotype endemic to Asia. Our findings confirm the presence of Bd in northern Western Ghats and the affected amphibians may or may not show detectable clinical symptoms. We suggest that the significance of diseases as potential threat to amphibian populations of the Western Ghats needs to be highlighted from the conservation point of view.
    PLoS ONE 10/2013; 8(10):e77528. DOI:10.1371/journal.pone.0077528 · 3.23 Impact Factor
  • Source
    • "This leads to the question of how Bd is transported from one location to another. Trade of live animals is commonly suggested as the most likely means of dispersal [4], [12], [64], [60], [65], [86], [94], [95], [96], [97], [98], [99]. However, recent findings support the notion that other dispersal vectors are also possible such as reptiles, birds or mammals [100], [101], [102]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A putative driver of global amphibian decline is the panzootic chytrid fungus Batrachochytrium dendrobatidis (Bd). While Bd has been documented across continental Africa, its distribution in West Africa remains ambiguous. We tested 793 West African amphibians (one caecilian and 61 anuran species) for the presence of Bd. The samples originated from seven West African countries - Bénin, Burkina Faso, Côte d'Ivoire, Ghana, Guinea, Liberia, Sierra Leone - and were collected from a variety of habitats, ranging from lowland rainforests to montane forests, montane grasslands to humid and dry lowland savannahs. The species investigated comprised various life-history strategies, but we focused particularly on aquatic and riparian species. We used diagnostic PCR to screen 656 specimen swabs and histology to analyse 137 specimen toe tips. All samples tested negative for Bd, including a widespread habitat generalist Hoplobatrachus occipitalis which is intensively traded on the West African food market and thus could be a potential dispersal agent for Bd. Continental fine-grained (30 arc seconds) environmental niche models suggest that Bd should have a broad distribution across West Africa that includes most of the regions and habitats that we surveyed. The surprising apparent absence of Bd in West Africa indicates that the Dahomey Gap may have acted as a natural barrier. Herein we highlight the importance of this Bd-free region of the African continent - especially for the long-term conservation of several threatened species depending on fast flowing forest streams (Conraua alleni ("Vulnerable") and Petropedetes natator ("Near Threatened")) as well as the "Critically Endangered" viviparous toad endemic to the montane grasslands of Mount Nimba (Nimbaphrynoides occidentalis).
    PLoS ONE 02/2013; 8(2):e56236. DOI:10.1371/journal.pone.0056236 · 3.23 Impact Factor
Show more