Article

Discrimination of motor imagery-induced EEG patterns in patients with complete spinal cord injury.

Laboratory of Brain-Computer Interfaces, Institute for Knowledge Discovery, Graz University of Technology, Krenngasse 37, 8010 Graz, Austria.
Computational Intelligence and Neuroscience 02/2009; DOI: 10.1155/2009/104180
Source: PubMed

ABSTRACT EEG-based discrimination between different motor imagery states has been subject of a number of studies in healthy subjects. We investigated the EEG of 15 patients with complete spinal cord injury during imagined right hand, left hand, and feet movements. In detail we studied pair-wise discrimination functions between the 3 types of motor imagery. The following classification accuracies (mean +/- SD) were obtained: left versus right hand 65.03% +/- 8.52, left hand versus feet 68.19% +/- 11.08, and right hand versus feet 65.05% +/- 9.25. In 5 out of 8 paralegic patients, the discrimination accuracy was greater than 70% but in only 1 out of 7 tetraplagic patients. The present findings provide evidence that in the majority of paraplegic patients an EEG-based BCI could achieve satisfied results. In tetraplegic patients, however, it is expected that extensive training-sessions are necessary to achieve a good BCI performance at least in some subjects.

2 Bookmarks
 · 
138 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over the past two decades, much progress has been made in the rapidly evolving field of Brain Computer Interface (BCI). This paper presents a novel concept: a BCI-simulator, which has been developed for the Hex-O-Spell interface, using the sensory motor rhythms (SMR) paradigm. With the simulator, it is possible to evaluate how the model parameters such as error classifications, delay between classifications and success rate affect the communication rate. Another advantage of the simulator is that it allows us to study for more classes than most online BCI systems which are limited to only two classes. Results show that the BCI simulator is able to give a deeper understanding of the feedback systems. We also find that a 3-class system is more efficient than a 2-class system if it obtains a success rate of at least 55% of the 2-class system.
    Computer methods and programs in biomedicine 05/2013; · 1.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Co-adaptive training paradigms for event-related desynchronization (ERD) based brain-computer interfaces (BCI) have proven effective for healthy users. As of yet, it is not clear whether co-adaptive training paradigms can also benefit users with severe motor impairment. The primary goal of our paper was to evaluate a novel cue-guided, co-adaptive BCI training paradigm with severely impaired volunteers. The co-adaptive BCI supports a non-control state, which is an important step toward intuitive, self-paced control. A secondary aim was to have the same participants operate a specifically designed self-paced BCI training paradigm based on the auto-calibrated classifier. The co-adaptive BCI analyzed the electroencephalogram from three bipolar derivations (C3, Cz, and C4) online, while the 22 end users alternately performed right hand movement imagery (MI), left hand MI and relax with eyes open (non-control state). After less than five minutes, the BCI auto-calibrated and proceeded to provide visual feedback for the MI task that could be classified better against the non-control state. The BCI continued to regularly recalibrate. In every calibration step, the system performed trial-based outlier rejection and trained a linear discriminant analysis classifier based on one auto-selected logarithmic band-power feature. In 24 minutes of training, the co-adaptive BCI worked significantly (p = 0.01) better than chance for 18 of 22 end users. The self-paced BCI training paradigm worked significantly (p = 0.01) better than chance in 11 of 20 end users. The presented co-adaptive BCI complements existing approaches in that it supports a non-control state, requires very little setup time, requires no BCI expert and works online based on only two electrodes. The preliminary results from the self-paced BCI paradigm compare favorably to previous studies and the collected data will allow to further improve self-paced BCI systems for disabled users.
    PLoS ONE 01/2014; 9(7):e101168. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-invasive EEG-based Brain-Computer Interfaces (BCI) can be promising for the motor neuro-rehabilitation of paraplegic patients. However, this shall require detailed knowledge of the abnormalities in the EEG signatures of paraplegic patients. The association of abnormalities in different subgroups of patients and their relation to the sensorimotor integration are relevant for the design, implementation and use of BCI systems in patient populations. This study explores the patterns of abnormalities of movement related cortical potentials (MRCP) during motor imagery tasks of feet and right hand in patients with paraplegia (including the subgroups with/without central neuropathic pain (CNP) and complete/incomplete injury patients) and the level of distinctiveness of abnormalities in these groups using pattern classification. The most notable observed abnormalities were the amplified execution negativity and its slower rebound in the patient group. The potential underlying mechanisms behind these changes and other minor dissimilarities in patients’ subgroups, as well as the relevance to BCI applications, are discussed. The findings are of interest from a neurological perspective as well as for BCI-assisted neuro-rehabilitation and therapy.
    Frontiers in Neuroengineering 01/2014; 7(35).

Full-text (2 Sources)

View
1 Download
Available from