Cytotoxicity Evaluation of Self Adhesive Composite Resin Cements by Dentin Barrier Test on 3D Pulp Cells

DDS, PhD, Research Assistant, Selcuk University, Faculty of Dentistry, Department of Conservative Dentistry, Konya, Turkey.
European journal of dentistry 04/2009; 3(2):120-6.
Source: PubMed

ABSTRACT The aim of this study was to evaluate the effects of five self-etch dental composite resin cements on the cell viability of bovine dental papilla-derived cells.
The cytotoxicity of composite resin cements (Rely X Unicem Clicker, 3M ESPE; MaxCem; KERR, Panavia F 2.0; Kuraray, BisCem; Bisco and Bistite II DC; Tokuyama) was analyzed in a dentin barrier test device using three-dimensional (3D) pulp cell cultures. A commercially available cell culture perfusion chamber was separated into two compartments by 500 mum dentin disc. The three dimensional cultures placed on a dentin disk held in place by a special biocompatible stainless-steel holder. Test materials were introduced into the upper compartment in direct contact with the cavity side of the dentin disks according to the manufacturer's instructions. Subsequently, the pulpal part of the perfusion chamber containing the cell cultures was perfused with medium (2 ml/h). After an exposure period of 24 h, the cell survival was determined by the MTT assay. Statistical analyses were performed using the Mann-Whitney U-test.
In dentin barrier test, cell survival was similar with Maxcem and negative control group (P>.05), and all other tested materials were cytotoxic for the three dimensional cell cultures (P>.05).
The significance of composite resin cements is being more important in dentistry. The cytotoxic potencies demonstrated by these materials might be of clinical relevance. Some composite resin cements include biologically active ingredients and may modify pulp cell metabolism when the materials are used in deep cavities or directly contact pulp tissue.

Download full-text


Available from: Abdulkadir Sengun, Apr 09, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the bonding effectiveness of self-adhesive luting cements to dentin in the presence of simulated hydrostatic intrapulpal pressure (PP). Thirty composite overlays (Aelite All Purpose Body) were luted to deep-coronal dentin surfaces using four self-adhesive resin cements (Rely X Unicem, G-Cem, Multilink Sprint, Bis-Cem) and one total-etch system (Calibra). Half of the specimens resin cements were applied under a PP of 15 cm H2O. After storage in a moist condition for 1 month (37 degrees C, 100% relative humidity), specimens were sectioned into microtensile beams (1mm2) and stressed to failure with the microtensile bond strength test (microTBS). Data were statistically analyzed with Kruskal-Wallis ranking (p<0.05) and Mann-Whitney tests (p<0.001). The fracture pattern was evaluated under SEM. Bond strength of Calibra fell significantly when PP was applied during bonding (p<0.05). Rely X Unicem and Bis-Cem performed better under PP. No significant differences for Multilink Sprint and G-Cem bonded specimens were recorded with or without PP. Simulated PP influences the adhesive performance of resinous cements. The predominance of acid-base reactions or radical polymerization may explain the different behavior of self-adhesive cements when changing substrate wetness. The application of constant intrapulpal perfusion should be considered when simulating luting procedures in vitro.
    Dental Materials 09/2008; 24(9):1156-63. DOI:10.1016/ · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Numerous factors influence cell functions and tissue development in culture. A modular culture system has been developed to allow the control of many of these important environmental parameters. Optimal adhesion of cells is obtained by selecting an individual biomaterial. Selected specimens are mounted in a tissue carrier in order to protect it against damage during handling and after seeding cells, the carriers can be used in a series of compatible perfusion culture containers. This technique allows the simple bathing of growing tissue under continuous medium transport and the exposure of epithelia to a gradient with different fluids at the luminal and basal sides. A further container is made of transparent material to observe microscopically the developing tissue. In addition, a special model features a flexible silicone lid to apply force to mimic the mechanical load required for developing connective and muscular tissue. Perfusion culture of stem/progenitor cells at the interface of an artificial interstitium made by a polyester fleece results in the spatial development of tubules. During long term culture over weeks the growing tissue is continuously exposed to fresh nutrition and respiratory gas. The medium is transported in a constant flow or in pulses, preventing unstirred layers of fluid. A variety of applications of this modular system, described in this paper, demonstrates that the biological profile of cells and tissues can be strongly improved when perfusion culture with a permanent provision of fresh medium is applied.
    Biomaterials 04/2010; 31(11):2945-54. DOI:10.1016/j.biomaterials.2009.12.048 · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the cytotoxic effects of five different light-cured orthodontic bonding composites. Materials and Methods: The orthodontic composites Heliosit Orthodontic (Ivoclar), Transbond XT (3M Unitek), Bisco ORTHO (Bisco), Light Bond (Reliance), and Quick Cure (Reliance) were prepared, and the samples were extracted in 3 mL of BME (Basal Medium Eagle) with 10% newborn calf serum for 24 hours. The L929 cells were plated (25,000 cells/mL) in a 96-well dish and maintained in a humidified incubator for 24 hours at 37 degrees C, 5% CO(2), and 95% air. After 24 hours of incubation of the cells, the incubation medium was replaced by the immersed medium in which the samples were stored. Then, L929 cells were incubated in contact with eluates for 24 hours. The cell mitochondrial activity was evaluated by the methyl tetrazolium (MTT) test. Twelve wells were used for each specimen, and the MTT tests were applied two times. The data were statistically analyzed by one-way analysis of variance (ANOVA) and Tukey HSD tests. Results with L929 fibroblasts demonstrated that except for Transbond XT, freshly prepared composite materials did not reduce vital cell numbers (P > .05) compared with the control group. Our data demonstrate that Transbond XT showed significant cytotoxicity compared with the control group. Results indicate that tested orthodontic bonding composites are suitable for clinical application, but that further studies using different test methods are needed for Transbond XT.
    The Angle Orthodontist 07/2010; 80(4):571-6. DOI:10.2319/092809-537.1 · 1.28 Impact Factor
Show more