The mir-34 microRNA is required for the DNA damage response in vivo in C. elegans and in vitro in human breast cancer cells.

Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.
Oncogene (Impact Factor: 8.56). 06/2009; 28(25):2419-24. DOI: 10.1038/onc.2009.106
Source: PubMed

ABSTRACT MicroRNAs (miRNAs) are important regulators of cell fate determination and homeostasis. Expression of these small RNA genes is tightly regulated during development and in normal tissues, but they are often misregulated in cancer. MiRNA expression is also affected by DNA damaging agents, such as radiation. In particular, mammalian miR-34 is upregulated by p53 in response to radiation, but little is known about the role of this miRNA in vivo. Here we show that Caenorhabditis elegans with loss-of-function mutations in the mir-34 gene have an abnormal cellular survival response to radiation; these animals are highly radiosensitive in the soma and radioresistant in the germline. These findings show a role for mir-34 in both apoptotic and non-apoptotic cell death in vivo, much like that of cep-1, the C. elegans p53 homolog. These results have been additionally validated in vitro in breast cancer cells, wherein exogenous addition of miR-34 alters cell survival post-radiation. These observations confirm that mir-34 is required for a normal cellular response to DNA damage in vivo resulting in altered cellular survival post-irradiation, and point to a potential therapeutic use for anti-miR-34 as a radiosensitizing agent in p53-mutant breast cancer.


Available from: Frank Slack, May 29, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are an emerging class of gene expression modulators with relevant roles in several biological processes, including cell differentiation, development, apoptosis, and regulation of the cell cycle. Deregulation of those tiny RNA molecules has been described frequently as a major determinant for the initiation and progression of diseases, including cancer. Not only miRNAs but also the enzymes responsible for miRNA processing could be deregulated in cancer. In this review, we address the role of miRNAs in the pathogenesis of breast cancer, since there are oncogenic, tumor-suppressive, and metastatic-influencing miRNAs. Additionally, the different detection platforms and normalization strategies for miRNAs will be discussed. The major part of this review, however, will focus on the capability of miRNAs to act as diagnostic, predictive, or prognostic biomarkers. We will give an overview of their potential to correlate with response to or benefit from a given treatment and we will consider their ability to give information on prognosis in breast cancer. We will focus on miRNAs validated by more than one study or verified in independent cohorts or where results rely on preclinical as well as clinical evidence. As such, we will discuss their potential use in the personalized management of breast cancer.
    Breast Cancer Research 12/2015; 17(1). DOI:10.1186/s13058-015-0526-y · 5.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Enhancing radiosensitivity is an important area of investigation for improving breast cancer therapy outcomes. The aim of this study was to assess the role of the miR-15 family in the radiosensitivity of breast cancer cells. MicroRNAs (miRNAs) encoded by the miR-15 cluster are known to induce G1 arrest and apoptosis by targeting G1 checkpoints and the anti-apoptotic B cell lymphoma 2 (BCL-2) gene. However, the effect of the miR-15 family on G2/M arrest and radiosensitivity remains poorly understood. In the current study, cells transfected with miR-15a/15b/16 mimic or inhibitor were irradiated and examined by: clonogenic assays, phosphorylated H2AX assay, flow cytometry, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), real-time PCR and Western blot. Real-time PCR was also used to monitor time-dependent changes of miR-15a/15b/16 expression after irradiation. A putative target site for miR-15a/15b/16 within the Chk1 and Wee1 3' UTRs was confirmed using luciferase reporter assays. Additionally, siRNA was used to validate the effect of Chk1 and Wee1 on radiosensitivity in breast cancer cells. In our study, we investigated the effects of radiation on the miR-15 family and found a time-dependent change in the expression of miR-15a/15b/16 in breast cancer cells postirradiation, as well as an increase in miR-15 family-mediated sensitization of breast cancer cells to radiation. The increase in radiosensitivity induced by the miR-15 family was associated with persistent unrepaired DNA damage, abrogation of radiation-induced G2 arrest and suppressed cell proliferation, and appear to involve both the checkpoint kinase 1 (Chk1) and Wee1. In addition, we found that inhibition of the miR-15 family could not induce cell resistance to radiation. These findings suggest that the expression of the miR-15 family contributes to increased radiosensitivity of breast cancer cells by influencing G2/M checkpoint proteins.
    Radiation Research 01/2015; 183(2). DOI:10.1667/RR13784.1 · 2.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, it was reported that knockdown of DICER reduced the ATM-dependent DNA damage response and homologous recombination repair (HRR) via decreasing DICER-generated small RNAs at the damage sites. However, we found that knockdown of DICER dramatically increased cell resistance to camptothecin that induced damage required ATM to facilitate HRR. This phenotype is due to a prolonged G1/S transition via decreasing DICER-dependent biogenesis of miRNA let-7, which increased the p21(Waf1/Cip1)/p27(Kip1) levels and resulted in decreasing the HRR efficiency. These results uncover a novel function of DICER in regulating the cell cycle through miRNA biogenesis, thus affecting cell response to DNA damage. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 02/2015; 43(3). DOI:10.1093/nar/gku1368 · 8.81 Impact Factor