Article

Induction of drug-metabolizing enzymes by phenobarbital in layered co-culture of a human liver cell line and endothelial cells.

Advanced Medical Materials Group, Biomaterials Center, National Institute for Materials Science, MANA, Tsukuba, Ibaraki, Japan.
Biological & Pharmaceutical Bulletin (Impact Factor: 1.78). 06/2009; 32(5):813-7. DOI: 10.1248/bpb.32.813
Source: PubMed

ABSTRACT Primary human hepatocytes are extensively used to study the potential of drugs to induce cytochrome P450 (CYP). However, the activities of these enzymes decrease rapidly during culture. Previously we reported that in a layered co-culture system with HepG2 and bovine endothelial cells, the expression levels of various CYP genes were significantly increased compared with the monolayer cultured HepG2 cells. Here, we examined the induction of CYP gene expression by an inducer by examining the effect of phenobarbital treatment on CYP gene expression in the co-culture system. In the layered co-cultured HepG2, expression of the CYP2C and CYP3A family genes was induced by phenobarbital treatment. We also detected CYP3A4 enzyme induction using this co-culture system. Moreover, the induction of hepatic drug transporters by phenobarbital was detected. These results suggest that functional regulation of the CYP and transporter gene pathway is retained in these layered co-cultured cells. Thus, this system may serve as a useful model for in vitro pharmacological studies on the coordinated regulation of transport and metabolism.

0 Bookmarks
 · 
74 Views
  • Journal of The American College of Cardiology - J AMER COLL CARDIOL. 01/2011; 57(14).
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have developed two cell culture systems for use in pharmaceutical research using nano-biotechnology. First, we developed a double layered co-culture system using cell sheet technology, and showed that in a layered co-culture system with HepG2 and bovine endothelial cells, the expression levels of various cytochrome P450 (CYP) genes were significantly increased compared to monolayer cultured HepG2 cells. In the layered HepG2 co-culture, expression of the CYP2C and CYP3A family genes was induced by phenobarbital treatment. We also detected CYP3A4 enzyme induction using this co-culture system. Next, we developed sensor cells. Living cells maintain homeostasis by responding quickly and with great sensitivity to changes in the external environment. Consequently, sensors using cells as active elements are thought to be able to perform analyses faster and with more sensitivity than previous methods. We have modified mammalian cells using genetic engineering techniques to develop next-generation cell sensors that can visually represent specific reactions. We successfully produced devices using sensor cells that can process a variety of specimens using Micro-Electro-Mechanical System (MEMS), Nano-Electro-Mechanical System (NEMS), and other nano/micro processing technologies. These systems may serve as a useful model for in vitro pharmacological studies on the coordinated regulation of metabolism and cytotoxicity. In this review, we introduce our research and describe recent trends in this field.
    Yakugaku zasshi journal of the Pharmaceutical Society of Japan 04/2010; 130(4):529-35. · 0.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Orthotopic liver transplantation (OLT) is the most effective therapy for liver failure. However, OLT is severely limited by the shortage of liver donors. Bioartificial liver (BAL) shows great potential as an alternative therapy for liver failure. In recent years, progress has been made in BAL regarding genetically engineered cell lines, immortalized human hepatocytes, methods for preserving the phenotype of primary human hepatocytes, and other functional hepatocytes derived from stem cells. A systematic search of PubMed and ISI Web of Science was performed to identify relevant studies in English language literature using the key words such as liver failure, bioartificial liver, hepatocyte, stem cells, differentiation, and immortalization. More than 200 articles related to the cell sources of hepatocyte in BAL were systematically reviewed. Methods for preserving the phenotype of primary human hepatocytes have been successfully developed. Many genetically engineered cell lines and immortalized human hepatocytes have also been established. Among these cell lines, the incorporation of BAL with GS-HepG2 cells or alginate-encapsulated HepG2 cells could prolong the survival time and improve pathophysiological parameters in an animal model of liver failure. The cBAL111 cells were evaluated using the AMC-BAL bioreactor, which could eliminate ammonia and lidocaine, and produce albumin. Importantly, BAL loading with HepLi-4 cells could significantly improve the blood biochemical parameters, and prolong the survival time in pigs with liver failure. Other functional hepatocytes differentiated from stem cells, such as human liver progenitor cells, have been successfully achieved. Aside from genetically modified liver cell lines and immortalized human hepatocytes, other functional hepatocytes derived from stem cells show great potential as cell sources for BAL. BAL with safe and effective liver cells may be achieved for clinical liver failure in the near future.
    Hepatobiliary & pancreatic diseases international: HBPD INT 12/2012; 11(6):594-605. · 1.17 Impact Factor