Article

Kalopanaxsaponin A inhibits PMA-induced invasion by reducing matrix metalloproteinase-9 via PI3K/Akt- and PKCdelta-mediated signaling in MCF-7 human breast cancer cells.

Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, Korea.
Carcinogenesis (Impact Factor: 5.27). 06/2009; 30(7):1225-33. DOI: 10.1093/carcin/bgp111
Source: PubMed

ABSTRACT Induction of matrix metalloproteinase (MMP)-9 is particularly important for the invasiveness of breast cancers. We investigated the inhibitory effect of kalopanaxsaponin A (KPS-A) on cell invasion and MMP-9 activation in phorbol 12-myristate 13-acetate (PMA)-treated MCF-7 human breast cancer cells. KPS-A inhibited PMA-induced cell proliferation and invasion. PMA-induced cell invasion was blocked in the presence of a primary antibody of MMP-9, and KPS-A suppressed the increased expression and/or secretion of MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1. Using specific inhibitors, we confirmed that PMA-induced cell invasion and MMP-9 expression is primarily regulated by nuclear factor-kappa B (NF-kappaB) activation via phosphatidylinositol 3-kinase (PI3K)/Akt and activator protein-1 (AP-1) activation via extracellular signal-regulated kinase (ERK)1/2. KPS-A decreased PMA-induced transcriptional activation of NF-kappaB and AP-1 and inhibited PMA-induced phosphorylation of ERK1/2 and Akt. Treatment with the protein kinase C (PKC)delta inhibitor rottlerin caused a marked decrease in PMA-induced MMP-9 secretion and cell invasion, as well as ERK/AP-1 activation, and KPS-A reduced PMA-induced membrane localization of PKCdelta. Furthermore, oral administration of KPS-A led to a substantial decrease in tumor volume and expression of proliferating cell nuclear antigen, MMP-9, TIMP-1 and PKCdelta in mice with MCF-7 breast cancer xenografts in the presence of 17beta-estradiol. These results suggest that KPS-A inhibits PMA-induced invasion by reducing MMP-9 activation, mainly via the PI3K/Akt/NF-kappaB and PKCdelta/ERK/AP-1 pathways in MCF-7 cells and blocks tumor growth and MMP-9-mediated invasiveness in mice with breast carcinoma. Therefore, KPS-A may be a promising anti-invasive agent with the advantage of oral dosing.

0 Bookmarks
 · 
217 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the effects of dihydromyricetin (DHM) on the migration and invasion of human hepatic cancer cells.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antroquinonol (ANQ) is an ubiquinon derivative isolated from the mycelium of Antrodia camphorata. However, the effect of ANQ on breast cancer treatment is unknown. We found that ANQ significantly suppressed the migration and invasion of breast cancer MDA-MB-231 cells, and inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced invasiveness by MCF7 cells. ANQ inhibiting MMP-9 gene expression and enzymatic activity occurred at transcriptional regulation. Mechanistically, activation of ERK and AKT is crucial for MMP-9 gene expression, and the addition of ANQ suppressed phosphorylation of ERK and AKT. The induction of the AP-1 and NF-κB pathway participated in MMP-9 gene expression. Suppression of ERK inhibited AP-1, whereas blocking AKT diminished NF-κB activity, and treatment with ANQ suppressed both AP-1 and NF-κB signaling. Moreover, ANQ suppressed EMT proteins expression, and inhibited TPA-induced EMT through downregulating the ERK-AP-1 and AKT-NF-κB signaling cascades. Together, our data showed for the first time that ANQ inhibited breast cancer invasiveness by suppressing ERK-AP-1- and AKT-NF-κB-dependent MMP-9 and EMT expressions.
    Food and Chemical Toxicology 02/2015; 78. DOI:10.1016/j.fct.2015.01.012 · 2.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose The purpose of the study was to examine the molecular mechanisms by which rottlerin inhibited growth of human pancreatic tumors in Balb C nude mice, and pancreatic cancer cells isolated from KrasG12D mice. Experimental Design AsPC-1 cells were injected subcutaneously into Balb c nude mice, and tumor-bearing mice were treated with rottlerin. Cell proliferation and apoptosis were measured by Ki67 and TUNEL staining, respectively. The expression of components of Akt, Notch, and Sonic Hedgehog (Shh) pathways were measured by the immunohistochemistry, Western blot analysis, and/or q-RT-PCR. The effects of rottlerin on pancreatic cancer cells isolated from KrasG12D mice were also examined. Results Rottlerin-treated mice showed a significant inhibition in tumor growth which was associated with suppression of cell proliferation, activation of capase-3 and cleavage of PARP. Rottlerin inhibited the expression of Bcl-2, cyclin D1, CDK2 and CDK6, and induced the expression of Bax in tumor tissues compared to untreated control. Rottlerin inhibited the markers of angiogenesis (Cox-2, VEGF, VEGFR, and IL-8), and metastasis (MMP-2 and MMP-9), thus blocking production of tumorigenic mediators in tumor microenvironment. Rottlerin also inhibited epithelial-mesenchymal transition by up-regulating E-cadherin and inhibiting the expression of Slug and Snail. Furthermore, rottlerin treatment of xenografted tumors or pancreatic cancer cells isolated from KrasG12D mice showed a significant inhibition in Akt, Shh and Notch pathways compared to control groups. These data suggest that rottlerin can inhibit pancreatic cancer growth by suppressing multiple signaling pathways which are constitutively active in pancreatic cancer. Conclusions Taken together, our data show that the rottlerin induces apoptosis and inhibits pancreatic cancer growth by targeting Akt, Notch and Shh signaling pathways, and provide a new therapeutic approach with translational potential for humans.
    Cancer Letters 10/2014; DOI:10.1016/j.canlet.2014.06.021 · 5.02 Impact Factor

Full-text

Download
131 Downloads
Available from
May 31, 2014