Electrical detection of protein biomarkers using bioactivated microfluidic channels

Stanford University Electrical Engineering Department, Stanford, CA 94305, USA.
Lab on a Chip (Impact Factor: 6.12). 06/2009; 9(10):1429-34. DOI: 10.1039/b818872f
Source: PubMed


Current methods used for analyzing biomarkers involve expensive and time consuming techniques like the Sandwich ELISA which require lengthy incubation times, high reagent costs, and bulky optical equipment. We have developed a technique involving the use of a micro-channel with integrated electrodes, functionalized with receptors specific to target biomarkers. We have applied our biochip to the rapid electrical detection and quantification of target protein biomarkers using protein functionalized micro-channels. We successfully demonstrate detection of anti-hCG antibody, at a concentration of 1 ng ml(-1) and a dynamic range of three orders of magnitude, in less than one hour. We envision the use of this technique in a handheld device for multiplex high throughput analysis using an array of micro-channels for probing various protein biomarkers in clinically relevant samples such as human serum for cancer detection.

Download full-text


Available from: Ronald Davis, Jun 29, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: The structure, physiology, synaptology, and neurochemistry of photoreceptors and second-order (horizontal and bipolar) cells of Xenopus laevis retina is reviewed. Rods represent 53% of the photoreceptors; the majority (97%) are green light-sensitive. Cones belong to large long-wavelength-sensitive (86%), large short-wavelength-sensitive (10%), and miniature ultraviolet wavelength-sensitive (4%) groups. Photoreceptors release glutamate tonically in darkness, hyperpolarize upon light stimulation and their transmitter release decreases. Photoreceptors form ribbon synapses with second-order cells where postsynaptic elements are organized into triads. Their overall adaptational status is regulated by ambient light conditions and set by the extracellular dopamine concentration. The activity of photoreceptors is under circadian control and is independent of the central body clock. Bipolar cell density is about 6000 cells/mm2 They receive mixed inputs from rods and cones. Some bipolar cell types violate the rule of ON-OFF segregation, giving off terminal branches in both sublayers of the inner plexiform layer. The majority of them contain glutamate, a small fraction is GABA-positive and accumulates serotonin. Luminosity-type horizontal cells are more frequent (approximately 1,000 cells/mm2) than chromaticity cells (approximately 450 cells/mm2). The dendritic field size of the latter type was threefold bigger than that of the former. Luminosity cells contact all photoreceptor types, whereas chromatic cells receive their inputs from the short-wavelength-sensitive cones and rods. Luminosity cells are involved in generating depolarizing responses in chromatic horizontal cells by red light stimulation which form multiple synapses with blue-light-sensitive cones. Calculations indicate that convergence ratios in Xenopus are similar to those in central retinal regions of mammals, predicting comparable spatial resolution.
    International Review of Cytology 02/2001; 210:77-120. DOI:10.1016/S0074-7696(01)10004-5 · 9.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Disease diagnosis at an early stage requires the availability of inexpensive platforms which can accurately and rapidly analyze a wide panel of biomarkers, genomic biomarkers in particular. Genetic biomarkers are typically detected through recognition of DNA hybridization events, which is typically performed using DNA microarrays, requiring overnight incubation times, and bulky and costly optical equipment. Here, we present the use of bioactivated microfluidic channels for the real time detection of DNA hybridization electrically. Our technique is several orders of magnitude faster in time compared to the use of microarrays, and two orders of magnitude lower in cost.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to detect diseases like cancer at an early stage while it still may be curable, it's necessary to develop a diagnostic technique which can rapidly and inexpensively detect protein and nucleic acid biomarkers, without making any sacrifice in the sensitivity. We have developed a technique, based on the use of bioactivated microfluidic channels integrated with electrodes for electrical sensing, which can be used to detect protein biomarkers, target cells, and DNA hybridization. In this paper, we discuss the theoretical detection limits of this kind of sensor, and also discuss various experimental considerations in the electrical characterization of our device. In particular, we discuss the temperature dependence, the impedance drift, the noise sources, and various methods for optimizing the signal to noise ratio.
    Journal of vacuum science & technology. B, Microelectronics and nanometer structures: processing, measurement, and phenomena: an official journal of the American Vacuum Society 12/2009; 27(6):3099-3103. DOI:10.1116/1.3264675 · 1.46 Impact Factor
Show more