Article

Reciprocal backcross mice confirm major loci linked to hyperoxic acute lung injury survival time.

Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Physiological Genomics (Impact Factor: 2.81). 06/2009; 38(2):158-68. DOI: 10.1152/physiolgenomics.90392.2008
Source: PubMed

ABSTRACT Morbidity and mortality associated with acute lung injury (ALI) and acute respiratory distress syndrome remain substantial. Although many candidate genes have been tested, a clear understanding of the pathogenesis is lacking, as is our ability to predict individual outcome. Because ALI is a complex disease, single gene approaches cannot easily identify effectors that must be treated concurrently. We employed a strategy to help identify critical genes and gene combinations involved in ALI mortality. Using hyperoxia to induce ALI, a mouse model for genetic analyses of ALI survival time was identified: C57BL/6J (B) mice are sensitive (i.e., die early), whereas 129X1/SvJ (S) mice are significantly more resistant, but with low penetrance. Segregation analysis of reciprocal F(2) mice generated from B and S strains revealed significant sex, cross, and parent of origin effects. Quantitative trait locus (QTL) analysis identified five chromosomal regions significantly linked to hyperoxic ALI survival time (named Shali1-Shali5). Further analyses demonstrated that both parental strains contribute resistance alleles to their offspring and that the phenotype demonstrated parent of origin effects. To validate earlier findings, we generated and tested mice from all eight possible B-S-derived backcrosses. Results from segregation and QTL analyses of 935 backcrosses, alone and combined with the previous 840 B-S-derived F(2) population, further supported the highly significant QTLs on chromosomes 1 (Shali1) and 4 (Shali2) and confirmed that the sex, cross, and parent of origin all contribute to survival time with hyperoxic ALI.

0 Followers
 · 
177 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The technique that can be applied to the calculation of aperture antenna radiation patterns is the equivalence principle followed by physical optics. The equivalence principle is based on replacing the physical antenna aperture with a virtual antenna aperture consisting of an ensemble of Huygen's sources, each of which is a source of spherical wavelets. The total pattern is taken as a construction of these Huygen's secondary waves. A Fourier transform relation exists between the amplitude distribution of these sources, and the radiation pattern in angle space. For most aperture antenna problems, these classical techniques are adequate and give reasonably accurate results. However, more modern analysis techniques such as method of moments (MOM), finite element method (FRM), and the finite difference time domain (FDTD) method are also discussed. These are more robust and accurate, but the complexity and large amount of computer resources required must be traded off with the accuracy desired.
    Antenna Theory and Techniques, 2003. 4th International Conference on; 10/2003
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanisms of ventilator-induced lung injury, an iatrogenic inflammatory condition induced by mechanical ventilation, are not completely understood. Toll-like receptor 4 (TLR4) signaling via the adaptor protein myeloid differentiation factor 88 (MyD88) is proinflammatory and plays a critical role in host immune response to invading pathogen and noninfectious tissue injury. The role of TLR4-MyD88 signaling in ventilator-induced lung injury remains incompletely understood. Mice were ventilated with low or high tidal volume (HTV), 7 or 20 ml/kg, after tracheotomy for 4 h. Control mice were tracheotomized without ventilation. Lung injury was assessed by: alveolar capillary permeability to Evans blue albumin, wet/dry ratio, bronchoalveolar lavage analysis for cell counts, total proteins and cytokines, results of histopathological examination of the lung, and plasma cytokine levels. Wild-type mice subjected to HTV had increased pulmonary permeability, inflammatory cell infiltration/lung edema, and interleukin-6/macrophage-inflammatory protein-2 in the lavage compared with control mice. In HTV, levels of inhibitor of kappaB alpha decreased, whereas phosphorylated extracellular signal-regulated kinases increased. TLR4 mutant and MyD88 mice showed markedly attenuated response to HTV, including less lung inflammation, pulmonary edema, cell number, protein content, and the cytokines in the lavage. Furthermore, compared with wild-type mice, both TLR4 mutant and MyD88 mice had significantly higher levels of inhibitor of kappaB alpha and reduced extracellular signal-regulated kinase phosphorylation after HTV. TLR4-MyD88 signaling plays an important role in the development of ventilator-induced lung injury in mice, possibly through mechanisms involving nuclear factor-kappaB and mitogen-activated protein kinase pathways.
    Anesthesiology 09/2010; 113(3):619-29. DOI:10.1097/ALN.0b013e3181e89ab2 · 6.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic imprinting, by which the expression of a gene depends on the parental origin of its alleles, may be subjected to reprogramming through each generation. Currently, such reprogramming is limited to qualitative description only, lacking more precise quantitative estimation for its extent, pattern and mechanism. Here, we present a computational framework for analyzing the magnitude of genetic imprinting and its transgenerational inheritance mode. This quantitative model is based on the breeding scheme of reciprocal backcrosses between reciprocal F(1) hybrids and original inbred parents, in which the transmission of genetic imprinting across generations can be tracked. We define a series of quantitative genetic parameters that describe the extent and transmission mode of genetic imprinting and further estimate and test these parameters within a genetic mapping framework using a new powerful computational algorithm. The model and algorithm described will enable geneticists to identify and map imprinted quantitative trait loci and dictate a comprehensive atlas of developmental and epigenetic mechanisms related to genetic imprinting. We illustrate the new discovery of the role of genetic imprinting in regulating hyperoxic acute lung injury survival time using a mouse reciprocal backcross design.
    Briefings in Bioinformatics 05/2011; 13(1):34-45. DOI:10.1093/bib/bbr023 · 5.92 Impact Factor