Article

SUMO interaction motifs in Sizn1 are required for promyelocytic leukemia protein nuclear body localization and for transcriptional activation.

Department of Pathology, The Children's Hospital of Philadelphia, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 06/2009; 284(29):19592-600. DOI: 10.1074/jbc.M109.010181
Source: PubMed

ABSTRACT Mutations in Sizn1 (Zcchc12), a novel transcriptional co-activator in the BMP signaling pathway, are associated with X-linked mental retardation. Previously, we demonstrated that Sizn1 positively modulates the BMP signal by interacting with Smad family members and cAMP-responsive element-binding protein-binding protein. To further define the molecular basis of Sizn1 function, we have explored its subcellular localization and generated various deletion mutants to carry out domain analyses. Here, we report that Sizn1 localizes to promyelocytic leukemia protein nuclear bodies (PML-NBs). Sizn1 deletion mutants that disrupt the MA homologous domain or the middle region fail to target to the PML-NB. We show that two SUMO interaction motifs (SIMs) in Sizn1 can bind to SUMO and govern SUMO conjugation to Sizn1 in the absence of the consensus motif for SUMO attachment. Interestingly, the SIM mutant Sizn1 localizes to nuclear bodies, but not to PML-NBs. Thus, SIMs mediate the localization of Sizn1 to PML-NB. Interestingly, mutations in SIM sequences and deletion of the MA homologous domain also affected the transcriptional co-activation function of a Sizn1. Taken together, our data indicate that the SIMs in Sizn1 are required for its PML-NB localization and for the full transcriptional co-activation function in BMP signaling.

0 Followers
 · 
64 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sumoylation affects many cellular processes by regulating the interactions of modified targets with downstream effectors. Here we identified the cytosolic Dipeptidyl-peptidase 9 (DPP9) as a SUMO1 interacting protein. Surprisingly, DPP9 binds to SUMO1 independent of the well-known SUMO Interacting Motif, but instead interacts with a loop involving Glu67 of SUMO1. Intriguingly, DPP9 selectively associates with SUMO1 and not SUMO2, due to a more positive charge in the SUMO1-loop. We mapped the SUMO-binding site of DPP9 to an extended arm structure, predicted to directly flank substrate entry site. Importantly, while mutants in the SUMO1-binding arm are less active compared to wild-type DPP9, SUMO1 stimulates DPP9 activity. Consistent with this, silencing of SUMO1 leads to a reduced cytosolic prolyl-peptidase activity. Taken together, these results suggest that SUMO1, or more likely, a sumoylated protein, acts as an allosteric regulator of DPP9.
    Journal of Biological Chemistry 11/2012; DOI:10.1074/jbc.M112.397224 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Setdb1 is a histone H3-lysine 9 (H3K9)-specific methyltransferase that interacts with various transcriptional regulators to induce local heterochromatin formation and participates as an indispensable component in building promyelocytic leukemia nuclear body (PML-NB), which is involved in various biological processes. We studied the effects of Setdb1 over-expression. We unexpectedly observed that exogenously expressed GFP-Setdb1 was retained in the cytoplasm, whereas endogenous Setdb1 showed a punctate nuclear signal. Leptomycin B (LMB) treatment, which blocks protein export from the nucleus, showed that entry of GFP-Setdb1 to the nucleus was regulated and that GFP-Setdb1 in the nucleus could localize at PML-NB as endogenous Setdb1. An analysis of Setdb1 deletion constructs showed that the N-terminal region was related to the nuclear export of Setdb1; supporting this, we detected two nuclear export signal motifs in this region. This N-terminal region had a SUMO interaction motif (SIM) whose mutation greatly reduced the ability of Setdb1 to associate with PML-NB and thus resulted in the disaggregation of PML-NB structure. We therefore presume that the cytoplasmic retention of over-expressed Setdb1 occurs as part of a regulatory mechanism to set a tight limit on the nuclear activity of Setdb1, whose excess activity might result in random and haphazard chromatin modifications that cause globally aberrant gene expression.
    Genes to Cells 06/2013; DOI:10.1111/gtc.12068 · 2.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since its discovery, 25 years ago, promyelocytic leukemia (PML) has been an enigma. Implicated in the oncogenic PML/RARA fusion, forming elusive intranuclear domains, triggering cell death or senescence, controlled by and perhaps controlling SUMOylation… there are multiple PML-related issues. Here we review the reciprocal interactions between PML, senescence, and SUMOylation, notably in the context of cellular transformation.
    Frontiers in Oncology 07/2013; 3:171. DOI:10.3389/fonc.2013.00171