Article

The p38 MAPK pathway inhibits tristetraprolin-directed decay of interleukin-10 and pro-inflammatory mediator mRNAs in murine macrophages.

Kennedy Institute of Rheumatology Division, Imperial College London, London, United Kingdom.
FEBS letters (Impact Factor: 3.54). 06/2009; 583(12):1933-8. DOI: 10.1016/j.febslet.2009.04.039
Source: PubMed

ABSTRACT p38 mitogen-activated protein kinase (MAPK) stabilises pro-inflammatory mediator mRNAs by inhibiting AU-rich element (ARE)-mediated decay. We show that in bone-marrow derived murine macrophages tristetraprolin (TTP) is necessary for the p38 MAPK-sensitive decay of several pro-inflammatory mRNAs, including cyclooxygenase-2 and the novel targets interleukin (IL)-6, and IL-1alpha. TTP(-/-) macrophages also strongly overexpress IL-10, an anti-inflammatory cytokine that constrains the production of the IL-6 despite its disregulation at the post-transcriptional level. TTP directly controls IL-10 mRNA stability, which is increased and insensitive to inhibition of p38 MAPK in TTP(-/-) macrophages. Furthermore, TTP enhances deadenylation of an IL-10 3'-untranslated region RNA in vitro.

0 Bookmarks
 · 
70 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Birch bark has a long lasting history as a traditional medicinal remedy to accelerate wound healing. Recently, the efficacy of birch bark preparations has also been proven clinically. As active principle pentacyclic triterpenes are generally accepted. Here, we report a comprehensive study on the underlying molecular mechanisms of the wound healing properties of a well-defined birch bark preparation named as TE (triterpene extract) as well as the isolated single triterpenes in human primary keratinocytes and porcine ex-vivo wound healing models. We show positive wound healing effects of TE and betulin in scratch assay experiments with primary human keratinocytes and in a porcine ex-vivo wound healing model (WHM). Mechanistical studies elucidate that TE and betulin transiently upregulate pro-inflammatory cytokines, chemokines and cyclooxygenase-2 on gene and protein level. For COX-2 and IL-6 this increase of mRNA is due to an mRNA stabilizing effect of TE and betulin, a process in which p38 MAPK and HuR are involved. TE promotes keratinocyte migration, putatively by increasing the formation of actin filopodia, lamellipodia and stress fibers. Detailed analyses show that the TE components betulin, lupeol and erythrodiol exert this effect even in nanomolar concentrations. Targeting the actin cytoskeleton is dependent on the activation of Rho GTPases. Our results provide insights to understand the molecular mechanism of the clinically proven wound healing effect of birch bark. TE and betulin address the inflammatory phase of wound healing by transient up-regulation of several pro-inflammatory mediators. Further, they enhance migration of keratinocytes, which is essential in the second phase of wound healing. Our results, together with the clinically proven efficacy, identify birch bark as the first medical plant with a high potential to improve wound healing, a field which urgently needs effective remedies.
    PLoS ONE 01/2014; 9(1):e86147. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The activation of TLRs by microbial molecules triggers intracellular signaling cascades and the expression of cytokines such as IL-10. Il10 expression is tightly controlled to ensure effective immune responses, whilst preventing pathology. Maximal TLR-induction of Il10 transcription in macrophages requires signaling through the MAPKs ERK and p38. Signals via p38 downstream of TLR4 activation also regulate IL-10 at the post-transcriptional level, but whether this mechanism operates downstream of other TLRs is not clear. We compared the regulation of IL-10 production in TLR2 and TLR4-stimulated BM-derived macrophages (BMMs) and found different stability profiles for the Il10 mRNA. TLR2 signals promoted a rapid induction and degradation of Il10 mRNA, whereas TLR4 signals protected the Il10 mRNA from rapid degradation, due to the activation of Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) and enhanced p38 signaling. This differential post-transcriptional mechanism contributes to a stronger induction of IL-10 secretion via TLR4. Our study provides a molecular mechanism for the differential IL-10 production by TLR2- or TLR4-stimulated BMMs, showing that p38-induced stability is not common to all TLR signaling pathways. This mechanism is also observed upon bacterial activation of TLR2 or TLR4 in BMMs, contributing to IL-10 modulation in these cells in an infection setting. This article is protected by copyright. All rights reserved.
    European Journal of Immunology 11/2013; · 4.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: All organisms are ordinarily exposed to various stresses. It is important for organisms to possess appropriate stress response mechanisms and to maintain homeostasis because the disruption of a stress response system can cause various diseases. Apoptosis signal-regulating kinase 1 (ASK1) is one of the stress-responsive MAP3Ks. ASK1 plays an important role in the response to reactive oxygen species (ROS), endoplasmic reticulum stress and pro-inflammatory cytokines, and it is involved in the pathogenesis of various diseases. Areas covered: In this review, the authors describe recent literature concerning the intricate and elaborate regulation system of ASK1, the function of ASK1 during a cellular stress response and the involvement of ASK1 in many diseases, including cancer, neurodegenerative diseases, infections, diabetes and cardiovascular diseases. Expert opinion: In certain disease conditions, ASK1 plays a protective role, whereas ASK1 can exacerbate the pathology of other diseases. Although ASK1 is involved in various diseases, there is no therapy or drug that targets ASK1 for use in a clinical setting. Recently, ASK1 inhibitors (K811 and MSC2032964A) have emerged, and their therapeutic potentials have been tested in vivo. ASK1 is currently receiving considerable attention as a new therapeutic target.
    Expert Opinion on Therapeutic Targets 03/2014; · 4.90 Impact Factor

Full-text (2 Sources)

View
17 Downloads
Available from
May 20, 2014

Similar Publications