Peptidoglycan induces loss of a nuclear peptidoglycan recognition protein during host tissue development in a beneficial animal-bacterial symbiosis.

Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 53706, USA.
Cellular Microbiology (Impact Factor: 4.82). 04/2009; 11(7):1114-27. DOI: 10.1111/j.1462-5822.2009.01315.x
Source: PubMed

ABSTRACT Peptidoglycan recognition proteins (PGRPs) are mediators of innate immunity and recently have been implicated in developmental regulation. To explore the interplay between these two roles, we characterized a PGRP in the host squid Euprymna scolopes (EsPGRP1) during colonization by the mutualistic bacterium Vibrio fischeri. Previous research on the squid-vibrio symbiosis had shown that, upon colonization of deep epithelium-lined crypts of the host light organ, symbiont-derived peptidoglycan monomers induce apoptosis-mediated regression of remote epithelial fields involved in the inoculation process. In this study, immunofluorescence microscopy revealed that EsPGRP1 localizes to the nuclei of epithelial cells, and symbiont colonization induces the loss of EsPGRP1 from apoptotic nuclei. The loss of nuclear EsPGRP1 occurred prior to DNA cleavage and breakdown of the nuclear membrane, but followed chromatin condensation, suggesting that it occurs during late-stage apoptosis. Experiments with purified peptidoglycan monomers and with V. fischeri mutants defective in peptidoglycan-monomer release provided evidence that these molecules trigger nuclear loss of EsPGRP1 and apoptosis. The demonstration of a nuclear PGRP is unprecedented, and the dynamics of EsPGRP1 during apoptosis provide a striking example of a connection between microbial recognition and developmental responses in the establishment of symbiosis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: All organisms have unique immune systems that help them identify and eliminate invading microorganisms. A group of evolutionary ancient molecules, the thioester-containing proteins (TEP) superfamily, are known to play an important immune role by aiding animal hosts in the recognition, destruction, and elimination of hazardous microorganisms and their products. Our laboratory focuses on studying the role of the immune system in the mutualistic relationship between the sepiolid squid, Euprymna scolopes and its bioluminescent symbiont Vibrio fischeri. In the present study, we report the identification of a novel TEP-like transcript expressed in the light organ of squid. Characterization of the full-length coding sequence showed a molecule of 4,218 nucleotides, corresponding to 1,406 amino acids. Further sequence analysis revealed it contained structural characteristics of A2M molecules, including the thioester and receptor-binding domains. Analysis using the predicted amino acid sequence suggested this transcript was a homologue of CD109 molecules, thus we named it E. scolopes-CD109 (Es-CD109). In addition to the light organ, we were able to detect and amplify Es-CD109 in 12 out of 14 adult squid tissues tested. Quantification experiments showed that Es-CD109 expression levels were significantly lower in the light organ of symbiotic compared to aposymbiotic juveniles, suggesting a possible down-regulation of the host immune response in the presence of the bacterial symbiont. Copyright © 2015. Published by Elsevier Ltd.
    Fish &amp Shellfish Immunology 03/2015; DOI:10.1016/j.fsi.2015.02.036 · 3.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Invertebrate animals are characterized by extraordinary diversity in terms of body plan, life history and life span. The past impression that invertebrate immune responses are controlled by relatively simple innate systems is increasingly contradicted by genomic analyses that reveal significant evolutionary novelty and complexity. One accessible measure of this complexity is the multiplicity of genes encoding homologs of pattern recognition receptors. These multigene families vary significantly in size, and their sequence character suggests that they vary in function. At the same time, certain aspects of downstream signaling appear to be conserved. Here, we analyze five major classes of immune recognition receptors from newly available animal genome sequences. These include the Toll-like receptors (TLR), Nod-like receptors (NLR), SRCR domain scavenger receptors, peptidoglycan recognition proteins (PGRP), and Gram negative binding proteins (GNBP). We discuss innate immune complexity in the invertebrate deuterostomes, which was first recognized in sea urchins, within the wider context of emerging genomic information across animal phyla. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Developmental & Comparative Immunology 10/2014; DOI:10.1016/j.dci.2014.10.013 · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the mutualistic relationship between the squid Euprymna tasmanica and the bioluminescent bacterium Vibrio fischeri, several host factors, including immune-related proteins, are known to interact and respond specifically and exclusively to the presence of the symbiont. In squid and octopus, the white body is considered to be an immune organ mainly due to the fact that blood cells, or hemocytes, are known to be present in high numbers and in different developmental stages. Hence, the white body has been described as the site of hematopoiesis in cephalopods. However, to our knowledge, there are no studies showing any molecular evidence of such functions. In this study, we performed a transcriptomic analysis of white body tissue of the Southern dumpling squid, E. tasmanica. Our primary goal was to gain insights into the functions of this tissue and to test for the presence of gene transcripts associated with hematopoietic and immune processes. Several hematopoiesis genes including CPSF1, GATA 2, TFIID, and FGFR2 were found to be expressed in the white body. In addition, transcripts associated with immune-related signal transduction pathways, such as the toll-like receptor/NF-κβ, and MAPK pathways were also found, as well as other immune genes previously identified in E. tasmanica's sister species, E. scolopes. This study is the first to analyze an immune organ within cephalopods, and to provide gene expression data supporting the white body as a hematopoietic tissue.
    PLoS ONE 10(3):e0119949. DOI:10.1371/journal.pone.0119949 · 3.53 Impact Factor

Full-text (4 Sources)

Available from
May 16, 2014