Deconstructing Stem Cell Tumorigenicity: A Roadmap to Safe Regenerative Medicine

Department of Cell Biology and Human Anatomy & Stem Cell Program, University of California Davis School of Medicine, Sacramento, CA, USA.
Stem Cells (Impact Factor: 7.7). 05/2009; 27(5):1050-6. DOI: 10.1002/stem.37
Source: PubMed

ABSTRACT Many of the earliest stem cell studies were conducted on cells isolated from tumors rather than from embryos. Of particular interest was research on embryonic carcinoma cells (EC), a type of stem cell derived from teratocarcinoma. The EC research laid the foundation for the later discovery of and subsequent work on embryonic stem cells (ESC). Both ESC isolated from the mouse (mESC) and then later from humans (hESC) shared not only pluripotency with their EC cousins, but also robust tumorigenicity as each readily form teratoma. Surprisingly, decades after the discovery of mESC, the question of what drives ESC to form tumors remains largely an open one. This gap in the field is particularly serious as stem cell tumorigenicity represents the key obstacle to the safe use of stem cell-based regenerative medicine therapies. Although some adult stem cell therapies appear to be safe, they have only a very narrow range of uses in human disease. Our understanding of the tumorigenicity of human induced pluripotent stem cells (IPSC), perhaps the most promising modality for future patient-specific regenerative medicine therapies, is rudimentary. However, IPSC are predicted to possess tumorigenic potential equal to or greater than that of ESC. Here, the links between pluripotency and tumorigenicity are explored. New methods for more accurately testing the tumorigenic potential of IPSC and of other stem cells applicable to regenerative medicine are proposed. Finally, the most promising emerging approaches for overcoming the challenges of stem cell tumorigenicity are highlighted.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cancers that develop after middle age usually exhibit genomic instability and multiple mutations. This is in direct contrast to pediatric tumors that usually develop as a result of specific chromosomal translocations and epigenetic aberrations. The development of genomic instability is associated with mutations that contribute to cellular immortalization and transformation. Cancer occurs when cancer-initiating cells (CICs), also called cancer stem cells, develop as a result of these mutations. In this paper, we explore how CICs develop as a result of genomic instability, including looking at which cancer suppression mechanisms are abrogated. A recent in vitro study revealed the existence of a CIC induction pathway in differentiating stem cells. Under aberrant differentiation conditions, cells become senescent and develop genomic instabilities that lead to the development of CICs. The resulting CICs contain a mutation in the alternative reading frame of CDKN2A (ARF)/p53 module, i.e., in either ARF or p53. We summarize recently established knowledge of CIC development and cellular immortality, explore the role of the ARF/p53 module in protecting cells from transformation, and describe a risk factor for genomic destabilization that increases during the process of normal cell growth and differentiation and is associated with the downregulation of histone H2AX to levels representative of growth arrest in normal cells.
    03/2015; 7(2):483-489. DOI:10.4252/wjsc.v7.i2.483
  • [Show abstract] [Hide abstract]
    ABSTRACT: The remarkable capacity for pluripotency and self-renewal in embryonic stem cells (ESCs) requires a finely tuned transcriptional circuitry wherein the pathways and genes that initiate differentiation are suppressed, but poised to respond rapidly to developmental signals. To elucidate transcriptional control in mouse ESCs in the naive, ground state, we defined the distribution of engaged RNA polymerase II (Pol II) at high resolution. We find that promoter-proximal pausing of Pol II is most enriched at genes regulating cell cycle and signal transduction and not, as expected, at developmental or bivalent genes. Accordingly, ablation of the primary pause-inducing factor NELF does not increase expression of lineage markers, but instead causes proliferation defects, embryonic lethality, and dysregulation of ESC signaling pathways. Indeed, ESCs lacking NELF have dramatically attenuated FGF/ERK activity, rendering them resistant to differentiation. This work thus uncovers a key role for NELF-mediated pausing in establishing the responsiveness of stem cells to developmental cues. Copyright © 2015 Elsevier Inc. All rights reserved.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In spite of intense research, over the past 2-3 decades, targeted to validating methods for the cure of T1D, based on cell substitution therapy in the place of exogenously administered insulin injections, achievement of the final goal continues to remain out of reach. In fact, aside of very limited clinical success of the few clinical trials of pancreatic islet cell transplantation in totally immunosuppressed patients with T1D, the vast majority of these diabetic patients invariably is insulin-dependent. New advances for cell and molecular therapy for T1D, including use of stem cells, are reviewed and discussed in an attempt to clearly establish where we are and where are we may go for the final cure for T1DM.
    01/2015; 4(1):22-31.

Preview (2 Sources)

Available from