Comparison of distinct protein isoforms of the receptor for advanced glycation end-products expressed in murine tissues and cell lines

Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
Cell and Tissue Research (Impact Factor: 3.57). 06/2009; 337(1):79-89. DOI: 10.1007/s00441-009-0791-0
Source: PubMed


The receptor for advanced glycation end-products (RAGE) is thought to be expressed ubiquitously as various protein isoforms. Our objective was to use Northern blotting, immunoblotting, and sensitivity to N-glycanase digestion to survey RAGE isoforms expressed in cell lines and mouse tissues in order to obtain a more comprehensive view of the RAGE expressome. Pulmonary RAGE mRNA (1.4 kb) was smaller than cell-line and tissue RAGE mRNA (6 kb-10 kb). Three anti-RAGE antibodies that recognized three distinct RAGE epitopes were used for protein studies (N-16, H-300, and alphaES). Lung expressed three predominant protein isoforms with apparent molecular masses of 45.1, 52.6, and 57.4 kDa (N-16/H-300) and four isoforms at 25.0, 46.9, 52.5, and 54.2 kDa (alphaES). These isoforms were expressed exclusively in lung. Heart, ileum, and kidney expressed a 44.0-kDa isoform (N-16), whereas aorta and pancreas expressed a 53.3-kDa isoform (alphaES). Each of these isoforms were absent in tissue extracts prepared from RAGE(-/-) mice. Cell lines expressed a 70.0-kDa isoform, and a subset expressed a 30.0-kDa isoform (alphaES). Lung RAGE appeared to contain two N-linked glycans. Tissue and cell-line RAGE isoforms were completely insensitive to PNGase F digestion. Thus, numerous RAGE protein isoforms are detectable in tissues and cell lines. Canonical transmembrane and soluble RAGE appear to be expressed solely in lung (N-16/H-300). Non-pulmonary tissues and cell lines, regardless of the source tissue, both express distinct RAGE protein isoforms containing the N-terminal N-16 epitope or the alphaES RAGE epitope encoded by alternate exon 9, but lacking the H-300 epitope.

13 Reads
  • Source
    • "(A) Western blot of total protein in lung homogenate of lungs from control and silica treated WT mice, 5 µg of protein were loaded per lane. In addition to mRAGE and sRAGE a third isoform of RAGE, recently termed xRAGE [40], was also detected by western blot. (B) Protein levels of total RAGE normalized to β-actin revealed a significant decrease in expression after silica injury. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of the receptor for advanced glycation end-products (RAGE) has been shown to differ in two different mouse models of asbestos and bleomycin induced pulmonary fibrosis. RAGE knockout (KO) mice get worse fibrosis when challenged with asbestos, whereas in the bleomycin model they are largely protected against fibrosis. In the current study the role of RAGE in a mouse model of silica induced pulmonary fibrosis was investigated. Wild type (WT) and RAGE KO mice received a single intratracheal (i.t.) instillation of silica in saline or saline alone as vehicle control. Fourteen days after treatment mice were subjected to a lung mechanistic study and the lungs were lavaged and inflammatory cells, protein and TGF-beta levels in lavage fluid determined. Lungs were subsequently either fixed for histology or excised for biochemical assessment of fibrosis and determination of RAGE protein- and mRNA levels. There was no difference in the inflammatory response or degree of fibrosis (hydroxyproline levels) in the lungs between WT and RAGE KO mice after silica injury. However, histologically the fibrotic lesions in the RAGE KO mice had a more diffuse alveolar septal fibrosis compared to the nodular fibrosis in WT mice. Furthermore, RAGE KO mice had a significantly higher histologic score, a measure of affected areas of the lung, compared to WT silica treated mice. A lung mechanistic study revealed a significant decrease in lung function after silica compared to control, but no difference between WT and RAGE KO. While a dose response study showed similar degrees of fibrosis after silica treatment in the two strains, the RAGE KO mice had some differences in the inflammatory response compared to WT mice. Aside from the difference in the fibrotic pattern, these studies showed no indicators of RAGE having an effect on the severity of pulmonary fibrosis following silica injury.
    PLoS ONE 03/2010; 5(3):e9604. DOI:10.1371/journal.pone.0009604 · 3.23 Impact Factor
  • Source
    • "Furthermore, it has been shown that the expression of many isoforms in tissues or cell lines is dependent on the cell type. Indeed, Gefter and colleagues [9] have recently illustrated that certain lung isoforms possess distinct epitopes which were not found elsewhere. Interestingly, nonlung cells and tissues were found to express mRNA which was more than three times the size of that expressed in the lung. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface molecules. As a pattern-recognition receptor capable of binding a diverse range of ligands, it is typically expressed at low levels under normal physiological conditions in the majority of tissues. In contrast, the lung exhibits high basal level expression of RAGE localised primarily in alveolar type I (ATI) cells, suggesting a potentially important role for the receptor in maintaining lung homeostasis. Indeed, disruption of RAGE levels has been implicated in the pathogenesis of a variety of pulmonary disorders including cancer and fibrosis. Furthermore, its soluble isoforms, sRAGE, which act as decoy receptors, have been shown to be a useful marker of ATI cell injury. Whilst RAGE undoubtedly plays an important role in the biology of the lung, it remains unclear as to the exact nature of this contribution under both physiological and pathological conditions.
    BioMed Research International 01/2010; 2010(21):917108. DOI:10.1155/2010/917108 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin super-family of cell surface receptors whose activation has been suggested to contribute to various pathologies. RAGE has been primarily studied in diabetes where its upregulation has been linked to disease in the kidney, vasculature, and nervous system. This protein is highly expressed in the lung under normal conditions, but its function is unknown. We therefore investigated the normal function of RAGE in the lung and its pulmonary expression in two disease states.Idiopathic pulmonary fibrosis (IPF) is a debilitating disease with both high morbidity and mortality. Unfortunately, there are currently no effective therapies for IPF necessitating mechanistic insight into the disease pathogenesis. We found that pulmonary fibrosis led to a depletion of RAGE in both animal models and tissue from patients with idiopathic pulmonary fibrosis. In contrast to other diseases in which RAGE signaling promotes pathology, we found that aged RAGE null mice spontaneously develop pulmonary fibrosis-like alterations and more severe fibrosis in response to asbestos injury. In addition, we found that RAGE null mice were fully protected from the fibrotic effects of bleomycin. In addition, we investigated the expression of RAGE in the lungs of diabetic rodents. Diabetes has been shown to alter RAGE expression in a number of tissues that do not normally express RAGE. We hypothesized that diabetes would alter pulmonary RAGE expression and contribute to the susceptibility to pulmonary injury. We found that pulmonary RAGE expression was unaltered in five rodent models suggesting that diabetes does not effect RAGE expression in the lung.Lastly, we identified that RAGE has a very high affinity for components in the basement membrane of the lung. A few RAGE studies suggested that it might serve a role as an adhesion molecule. We found that RAGE extensively colocalized with the alveolar basement membrane and had very high affinity for collagen I, collagen IV, and laminin, but not fibronectin. These findings along with the fact that RAGE null mice spontaneously develop fibrosis suggest a potential homeostatic function of RAGE in the lung. This is in stark contrast to the vast majority of studies, which suggest that its expression is solely pathologic.
Show more