Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells.

Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
The Journal of Immunology (Impact Factor: 5.52). 06/2009; 182(10):5904-8. DOI: 10.4049/jimmunol.0900732
Source: PubMed

ABSTRACT IL-23, an IL-12 family member, has been implicated in the development of Th17 cells and the progression of autoimmune diseases. However, due to the lack of availability of sensitive Ab reagents specific for the IL-23 receptor (IL-23R), it has been difficult to characterize the cell types that express the IL-23R and are responsive to IL-23 in vivo. To address the role of IL-23 in vivo, we have generated a novel "knock-in" mouse in which we have replaced the intracellular domain of the IL-23R with the GFP. We show that in addition to Th17 cells, a subset of myeloid cells express IL-23R and respond to IL-23 by producing IL-17 and IL-22. Our studies further demonstrate that IL-23R expression is crucial for generation of encephalitogenic Th17 cells, but its expression on the innate immune system is dispensible in the development of experimental autoimmune encephalomyelitis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Psoriasis and psoriatic arthritis (PsA) are pathophysiological enigmas among rheumatic diseases. Substantial clinical advances have been made with new therapy targeting different components of the IL-17 and IL-23 pathways. At the same time, an increase in research on the topic has provided new insights into the potential functional effects of treatments on cell types, pathways, and tissues of interest. Here we review our knowledge of all IL-17 family members, their relationships with the IL-23 pathway, and the outcomes of relevant clinical trials in which different strategies for targeting these molecules have been tested in the treatment of moderate to severe psoriasis and PsA.
    Current Rheumatology Reports 04/2014; 16(4):414.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: T-helper-17 (TH17) cells have critical roles in mucosal defence and in autoimmune disease pathogenesis. They are most abundant in the small intestine lamina propria, where their presence requires colonization of mice with microbiota. Segmented filamentous bacteria (SFB) are sufficient to induce TH17 cells and to promote TH17-dependent autoimmune disease in animal models. However, the specificity of TH17 cells, the mechanism of their induction by distinct bacteria, and the means by which they foster tissue-specific inflammation remain unknown. Here we show that the T-cell antigen receptor (TCR) repertoire of intestinal TH17 cells in SFB-colonized mice has minimal overlap with that of other intestinal CD4(+) T cells and that most TH17 cells, but not other T cells, recognize antigens encoded by SFB. T cells with antigen receptors specific for SFB-encoded peptides differentiated into RORγt-expressing TH17 cells, even if SFB-colonized mice also harboured a strong TH1 cell inducer, Listeria monocytogenes, in their intestine. The match of T-cell effector function with antigen specificity is thus determined by the type of bacteria that produce the antigen. These findings have significant implications for understanding how commensal microbiota contribute to organ-specific autoimmunity and for developing novel mucosal vaccines.
    Nature 04/2014; · 38.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The skin has a dual function as a barrier and a sensory interface between the body and the environment. To protect against invading pathogens, the skin harbours specialized immune cells, including dermal dendritic cells (DDCs) and interleukin (IL)-17-producing γδ T (γδT17) cells, the aberrant activation of which by IL-23 can provoke psoriasis-like inflammation. The skin is also innervated by a meshwork of peripheral nerves consisting of relatively sparse autonomic and abundant sensory fibres. Interactions between the autonomic nervous system and immune cells in lymphoid organs are known to contribute to systemic immunity, but how peripheral nerves regulate cutaneous immune responses remains unclear. We exposed the skin of mice to imiquimod, which induces IL-23-dependent psoriasis-like inflammation. Here we show that a subset of sensory neurons expressing the ion channels TRPV1 and Nav1.8 is essential to drive this inflammatory response. Imaging of intact skin revealed that a large fraction of DDCs, the principal source of IL-23, is in close contact with these nociceptors. Upon selective pharmacological or genetic ablation of nociceptors, DDCs failed to produce IL-23 in imiquimod-exposed skin. Consequently, the local production of IL-23-dependent inflammatory cytokines by dermal γδT17 cells and the subsequent recruitment of inflammatory cells to the skin were markedly reduced. Intradermal injection of IL-23 bypassed the requirement for nociceptor communication with DDCs and restored the inflammatory response. These findings indicate that TRPV1(+)Nav1.8(+) nociceptors, by interacting with DDCs, regulate the IL-23/IL-17 pathway and control cutaneous immune responses.
    Nature 04/2014; · 38.60 Impact Factor

Full-text (2 Sources)

Available from
Jun 2, 2014