Article

Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells.

Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
The Journal of Immunology (Impact Factor: 5.52). 06/2009; 182(10):5904-8. DOI: 10.4049/jimmunol.0900732
Source: PubMed

ABSTRACT IL-23, an IL-12 family member, has been implicated in the development of Th17 cells and the progression of autoimmune diseases. However, due to the lack of availability of sensitive Ab reagents specific for the IL-23 receptor (IL-23R), it has been difficult to characterize the cell types that express the IL-23R and are responsive to IL-23 in vivo. To address the role of IL-23 in vivo, we have generated a novel "knock-in" mouse in which we have replaced the intracellular domain of the IL-23R with the GFP. We show that in addition to Th17 cells, a subset of myeloid cells express IL-23R and respond to IL-23 by producing IL-17 and IL-22. Our studies further demonstrate that IL-23R expression is crucial for generation of encephalitogenic Th17 cells, but its expression on the innate immune system is dispensible in the development of experimental autoimmune encephalomyelitis.

0 Bookmarks
 · 
251 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IL-23 has been well studied in the context of T cell differentiation; however, its role in the differentiation of myeloid progenitors is less clear. In this paper, we describe a novel role of IL-23 in myeloid cell differentiation. Specifically, we have identified that in human PBMCs, IL-23 induces the expression of MDL-1, a PU.1 transcriptional target during myeloid differentiation, which orchestrates osteoclast differentiation through activation of DNAX activating protein of 12 kDa and its ITAMs. The molecular events that lead to the differentiation of human macrophages to terminally differentiated osteoclasts are dependent on spleen tyrosine kinase and phospholipase Cγ2 phosphorylation for the induction of intracellular calcium flux and the subsequent activation of master regulator osteoclast transcription factor NFATc1. IL-23-elicited osteoclastogenesis is independent of the receptor activator of NF-κB ligand pathway and uses a unique myeloid DNAX activating protein of 12 kDa-associated lectin-1(+)/DNAX activating protein of 12 kDa(+) cell subset. Our data define a novel pathway that is used by IL-23 in myeloid cells and identify a major mechanism for the stimulation of osteoclastogenesis in inflammatory arthritis. Copyright © 2014 by The American Association of Immunologists, Inc.
    Journal of immunology (Baltimore, Md. : 1950). 12/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IL-23 has been well studied in the context of T cell differentiation; however, its role in the differentiation of myeloid progenitors is less clear. In this paper, we describe a novel role of IL-23 in myeloid cell differentiation. Specifically, we have identified that inhuman PBMCs, IL-23 induces the expression of MDL-1, a PU.1 transcriptional target during myeloid differentiation, which orchestrates osteoclast differentiation through activation of DNAX activating protein of 12 kDa and its ITAMs. The molecular events that lead to the differentiation of human macrophages to terminally differentiated osteoclasts are dependent on spleen tyrosine kinase and phospholipase Cg2 phosphorylation for the induction of intracellular calcium flux and the subsequent activation of master regulator osteoclast transcription factor NFATc1. IL-23–elicited osteoclastogenesis is independent of the receptor activator of NF-kB ligand pathway and uses a unique myeloid DNAX activating protein of 12 kDa–associated lectin-1+/DNAX activating protein of 12 kDa+ cell subset. Our data define a novel pathway that is used by IL-23 in myeloid cells and identify a major mechanism for the stimulation of osteoclastogenesis in inflammatory arthritis.
    The Journal of Immunology. 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective Ankylosing spondylitis (AS) is a highly heritable common inflammatory arthritis that targets the spine and sacroiliac joints of the pelvis, causing pain and stiffness and leading eventually to joint fusion. Although previous studies have shown a strong association of IL23R with AS in white Europeans, similar studies in East Asian populations have shown no association with common variants of IL23R, suggesting either that IL23R variants have no role or that rare genetic variants contribute. The present study was undertaken to screen IL23R to identify rare variants associated with AS in Han Chinese. MethodsA 170-kb region containing IL23R and its flanking regions was sequenced in 50 patients with AS and 50 ethnically matched healthy control subjects from a Han Chinese population. In addition, the 30-kb region of peak association in white Europeans was sequenced in 650 patients with AS and 1,300 healthy controls. Validation genotyping was undertaken in 846 patients with AS and 1,308 healthy controls. ResultsWe identified 1,047 variants, of which 729 were not found in the dbSNP genomic build 130. Several potentially functional rare variants in IL23R were identified, including one nonsynonomous single-nucleotide polymorphism (nsSNP), Gly149Arg (position 67421184 GA on chromosome 1). Validation genotyping showed that the Gly149Arg variant was associated with AS (odds ratio 0.61, P = 0.0054). Conclusion This is the first study to implicate rare IL23R variants in the pathogenesis of AS. The results identified a low-frequency nsSNP with predicted loss-of-function effects that was protectively associated with AS in Han Chinese, suggesting that decreased function of the interleukin-23 (IL-23) receptor protects against AS. These findings further support the notion that IL-23 signaling has an important role in the pathogenesis of AS.
    Arthritis & Rheumatology 07/2013; 65(7). · 7.48 Impact Factor

Full-text (2 Sources)

Download
37 Downloads
Available from
Jun 2, 2014