Article

Increased [PSI+] appearance by fusion of Rnq1 with the prion domain of Sup35 in Saccharomyces cerevisiae.

Department of Biological Sciences, Laboratory of Macromolecular Interactions, and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea.
Eukaryotic Cell (Impact Factor: 3.18). 06/2009; 8(7):968-76. DOI: 10.1128/EC.00353-08
Source: PubMed

ABSTRACT During propagation, yeast prions show a strict sequence preference that confers the specificity of prion assembly. Although propagations of [PSI(+)] and [RNQ(+)] are independent of each other, the appearance of [PSI(+)] is facilitated by the presence of [RNQ(+)]. To explain the [RNQ(+)] effect on the appearance of [PSI(+)], the cross-seeding model was suggested, in which Rnq1 aggregates act as imperfect templates for Sup35 aggregation. If cross-seeding events take place in the cytoplasm of yeast cells, the collision frequency between Rnq1 aggregates and Sup35 will affect the appearance of [PSI(+)]. In this study, to address whether cross-seeding occurs in vivo, a new [PSI(+)] induction method was developed that exploits a protein fusion between the prion domain of Sup35 (NM) and Rnq1. This fusion protein successfully joins preexisting Rnq1 aggregates, which should result in the localization of NM around the Rnq1 aggregates and hence in an increased collision frequency between NM and Rnq1 aggregates. The appearance of [PSI(+)] could be induced very efficiently, even with a low expression level of the fusion protein. This study supports the occurrence of in vivo cross-seeding between Sup35 and Rnq1 and provides a new tool that can be used to dissect the mechanism of the de novo appearance of prions.

Full-text

Available from: Yeong-Jae Seok, Jul 25, 2014
0 Followers
 · 
100 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prions are protein conformations that "self-seed" the misfolding of their non-prion iso-forms into prion, often amyloid, conformations. The most famous prion is the mammalian PrP protein that in its prion form causes transmissible spongiform encephalopathy. Curiously there can be distinct conformational differences even between prions of the same protein propagated in the same host species. These are called prion strains or variants. For example, different PrP variants are faithfully transmitted during self-seeding and are associated with distinct disease characteristics. Variant-specific PrP prion differences include the length of the incubation period before the disease appears and the deposition of prion aggregates in distinct regions of the brain.(1) Other more common neurodegenerative diseases (e.g., Alzheimer disease, Parkinson disease, type 2 diabetes and ALS) are likewise caused by the misfolding of a normal protein into a self-seeding aggregate.(2) (-) (4) One of the most important unanswered questions is how the first prion-like seed arises de novo, resulting in the pathological cascade.
    09/2013; 3(1):e25698. DOI:10.4161/cl.25698
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prions are self-perpetuating conformational variants of particular proteins. In yeast, prions cause heritable phenotypic traits. Most known yeast prions contain a glutamine (Q)/asparagine (N)-rich region in their prion domains. [PSI+], the prion form of Sup35, appears de novo at dramatically enhanced rates following transient overproduction of Sup35 in the presence of [PIN+], the prion form of Rnq1. Here, we establish the temporal de novo appearance of Sup35 aggregates during such overexpression in relation to other cellular proteins. Fluorescently-labeled Sup35 initially forms one or a few dots when overexpressed in [PIN+] cells. One of the dots is perivacuolar, colocalizes with the aggregated Rnq1 dot and grows into peripheral rings/lines, some of which also colocalize with Rnq1. Sup35 dots that are not near the vacuole do not always colocalize with Rnq1 and disappear by the time rings start to grow. Bimolecular fluorescence complementation failed to detect any interaction between Sup35-VN and Rnq1-VC in [PSI+][PIN+] cells. In contrast, all Sup35 aggregates, whether newly induced or in established [PSI+], completely colocalize with the molecular chaperones Hsp104, Sis1, Ssa1 and eukaryotic release factor Sup45. In the absence of [PIN+], overexpressed aggregating proteins such as the Q/N-rich Pin4C or the non-Q/N-rich Mod5 can also promote the de novo appearance of [PSI+]. Similar to Rnq1, overexpressed Pin4C transiently colocalizes with newly appearing Sup35 aggregates. However, no interaction was detected between Mod5 and Sup35 during [PSI+] induction in the absence of [PIN+]. While the colocalization of Sup35 and aggregates of Rnq1 or Pin4C are consistent with the model that the heterologous aggregates cross-seed the de novo appearance of [PSI+], the lack of interaction between Mod5 and Sup35 leaves open the possibility of other mechanisms. We also show that Hsp104 is required in the de novo appearance of [PSI+] aggregates in a [PIN+]-independent pathway.
    PLoS Genetics 01/2015; 11(1):e1004814. DOI:10.1371/journal.pgen.1004814 · 8.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Differences in the clinical pathology of mammalian prion diseases reflect distinct heritable conformations of aggregated PrP proteins, called prion strains. Here, using the yeast [PSI +] prion, we examine the de novo establishment of prion strains (called variants in yeast). The [PSI +] prion protein, Sup35, is efficiently induced to take on numerous prion variant conformations following transient overexpression of Sup35 in the presence of another prion, e.g. [PIN +]. One hypothesis is that the first [PSI +] prion seed to arise in a cell causes propagation of only that seed's variant, but that different variants could be initiated in different cells. However, we now show that even within a single cell, Sup35 retains the potential to fold into more than one variant type. When individual cells segregating different [PSI +] variants were followed in pedigrees, establishment of a single variant phenotype generally occurred in daughters, granddaughters or great‐granddaughters – but in 5% of the pedigrees cells continued to segregate multiple variants indefinitely. The data are consistent with the idea that many newly formed prions go through a maturation phase before they reach a single specific variant conformation. These findings may be relevant to mammalian PrP prion strain establishment and adaptation.
    Molecular Microbiology 11/2012; 86(4). DOI:10.1111/mmi.12024 · 5.03 Impact Factor