Article

SHORT Syndrome with Partial Lipodystrophy Due to Impaired Phosphatidylinositol 3 Kinase Signaling.

K.G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
The American Journal of Human Genetics (Impact Factor: 10.99). 06/2013; DOI: 10.1016/j.ajhg.2013.05.023
Source: PubMed

ABSTRACT The phosphatidylinositol 3 kinase (PI3K) pathway regulates fundamental cellular processes such as metabolism, proliferation, and survival. A central component in this pathway is the p85α regulatory subunit, encoded by PIK3R1. Using whole-exome sequencing, we identified a heterozygous PIK3R1 mutation (c.1945C>T [p.Arg649Trp]) in two unrelated families affected by partial lipodystrophy, low body mass index, short stature, progeroid face, and Rieger anomaly (SHORT syndrome). This mutation led to impaired interaction between p85α and IRS-1 and reduced AKT-mediated insulin signaling in fibroblasts from affected subjects and in reconstituted Pik3r1-knockout preadipocytes. Normal PI3K activity is critical for adipose differentiation and insulin signaling; the mutated PIK3R1 therefore provides a unique link among lipodystrophy, growth, and insulin signaling.

1 Follower
 · 
154 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: All the human primary immunodeficiencies (PIDs) recognized as such in the 1950s were Mendelian traits and, whether autosomal or X-linked, displayed recessive inheritance. The first autosomal dominant (AD) PID, hereditary angioedema, was recognized in 1963. However, since the first identification of autosomal recessive (AR), X-linked recessive (XR) and AD PID-causing genes in 1985 (ADA; severe combined immunodeficiency), 1986 (CYBB, chronic granulomatous disease) and 1989 (SERPING1; hereditary angioedema), respectively, the number of genetically defined AD PIDs has increased more rapidly than that of any other type of PID. AD PIDs now account for 61 of the 260 known conditions (23%). All known AR PIDs are caused by alleles with some loss-of-function (LOF). A single XR PID is caused by gain-of-function (GOF) mutations (WASP-related neutropenia, 2001). In contrast, only 44 of 61 AD defects are caused by LOF alleles, which exert dominance by haploinsufficiency or negative dominance. Since 2003, up to 17 AD disorders of the third kind, due to GOF alleles, have been described. Remarkably, six of the 17 genes concerned also harbor monoallelic (STAT3), biallelic (C3, CFB, CARD11, PIK3R1) or both monoallelic and biallelic (STAT1) LOF alleles in patients with other clinical phenotypes. Most heterozygous GOF alleles result in auto-inflammation, auto-immunity, or both, with a wide range of immunological and clinical forms. Some also underlie infections and, fewer, allergies, by impairing or enhancing immunity to non-self. Malignancies are also rare. The enormous diversity of immunological and clinical phenotypes is thought provoking and mirrors the diversity and pleiotropy of the underlying genotypes. These experiments of nature provide a unique insight into the quantitative regulation of human immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The class I phosphoinositide 3-kinases (PI3Ks) are lipid kinases that transduce a host of cellular signals and regulate a broad range of essential functions including growth, proliferation, and migration. As such, PI3Ks have pivotal roles in diseases such as cancer, diabetes, primary immune disorders, and inflammation. These enzymes are activated downstream of numerous activating stimuli including receptor tyrosine kinases, G protein-coupled receptors (GPCRs), and the Ras superfamily of small G proteins. A major challenge is to decipher how each PI3K isoform is able to successfully synergize these inputs into their intended signaling function. This article highlights recent progress in characterizing the molecular mechanisms of PI3K isoform-specific activation pathways, as well as novel roles for PI3Ks in human diseases, specifically cancer and immune diseases. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
    Trends in Biochemical Sciences 01/2015; DOI:10.1016/j.tibs.2014.12.003 · 13.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lipodystrophies are a genetically heterogeneous group of disorders characterized by loss of subcutaneous adipose tissue and metabolic dysfunction, including insulin resistance, increased levels of free fatty acids, abnormal adipocytokine secretion, and ectopic fat deposition, which are also observed in patients with visceral obesity and/or type 2 diabetes mellitus. Pathophysiological, biochemical, and genetic studies suggest that impairment in multiple adipose tissue functions, including adipocyte maturation, lipid storage, formation and/or maintenance of the lipid droplet, membrane composition, DNA repair efficiency, and insulin signaling, results in severe metabolic and endocrine consequences, ultimately leading to specific lipodystrophic phenotypes. In this review, recent evidences on the causes and metabolic processes of lipodystrophies will be presented, proposing a disease model that could be potentially informative for better understanding of common metabolic diseases in humans, including obesity, metabolic syndrome, and type 2 diabetes.
    Current Diabetes Reports 03/2015; 15(3):578. DOI:10.1007/s11892-015-0578-5 · 3.38 Impact Factor