Loss of Drp1 function alters OPA1 processing and changes mitochondrial membrane organization.

Silence Therapeutics AG, 13125 Berlin, Germany.
Experimental Cell Research (Impact Factor: 3.56). 06/2009; 315(13):2165-80. DOI: 10.1016/j.yexcr.2009.04.016
Source: PubMed

ABSTRACT RNAi mediated loss of Drp1 function changes mitochondrial morphology in cultured HeLa and HUVEC cells by shifting the balance of mitochondrial fission and fusion towards unopposed fusion. Over time, inhibition of Drp1 expression results in the formation of a highly branched mitochondrial network along with "bulge"-like structures. These changes in mitochondrial morphology are accompanied by a reduction in levels of Mitofusin 1 (Mfn1) and 2 (Mfn2) and a modified proteolytic processing of OPA1 isoforms, resulting in the inhibition of cell proliferation. In addition, our data imply that bulge formation is driven by Mfn1 action along with particular proteolytic short-OPA1 (s-OPA1) variants: Loss of Mfn2 in the absence of Drp1 results in an increase of Mfn1 levels along with processed s-OPA1-isoforms, thereby enhancing continuous "fusion" and bulge formation. Moreover, bulge formation might reflect s-OPA1 mitochondrial membrane remodeling activity, resulting in the compartmentalization of cytochrome c deposits. The proteins Yme1L and PHB2 appeared not associated with the observed enhanced OPA1 proteolysis upon RNAi of Drp1, suggesting the existence of other OPA1 processing controlling proteins. Taken together, Drp1 appears to affect the activity of the mitochondrial fusion machinery by unbalancing the protein levels of mitofusins and OPA1.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mitochondria-shaping protein optic atrophy 1 (OPA1) has genetically distinguishable roles in mitochondrial morphology and apoptosis. The latter depends on the presenilin associated rhomboid like (PARL) protease, essential for the accumulation of a soluble intermembrane space form of OPA1 (IMS-OPA1). Here we show that OPA1 and PARL participate in the heat shock response, a stereotypical cellular process of adaptation to thermal stress. Upon heat shock, long forms of OPA1 are lost and mitochondria fragment. However, mitochondrial fusion is dispensable to maintain viability, whereas IMS-OPA1 is required. Upon conditioning-a process of mild heat shock and recovery-IMS-OPA1 accumulates, OPA1 oligomers increase and mitochondria release less cytochrome c, ultimately resulting in cellular resistance to subsequent apoptotic inducers. In Parl(-/-) cells accumulation of IMS-OPA1 is blunted and conditioning fails to protect from cytochrome c release and apoptosis. Thus, the OPA1/PARL dependent pathway of cristae remodeling is implicated in heat shock. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
    Biochimica et Biophysica Acta 05/2012; 1817(10):1886-93. · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Parkinson's disease mitochondrial dysfunction can lead to a deficient ATP supply to microtubule protein motors leading to mitochondrial axonal transport disruption. Compromised axonal transport will then lead to a disorganized distribution of mitochondria and other organelles in the cell, as well as, the accumulation of aggregated proteins like alpha-synuclein. Moreover, axonal transport disruption can trigger synaptic accumulation of autophagosomes packed with damaged mitochondria and protein aggregates promoting synaptic failure. We previously observed that neuronal-like cells with an inherent mitochondrial impairment derived from PD patients contain a disorganized microtubule network, as well as, alpha-synuclein oligomers accumulation. In this work we provide new evidence that an agent that promotes microtubule network assembly, NAP (davunetide), improves microtubule-dependent traffic, restores the autophagic flux and potentiates autophasosome-lysosome fusion leading to autophagic vacuole clearance in Parkinson's disease cells. Moreover, NAP is capable of efficiently reduce alpha-synuclein oligomer content and its sequestration by the mitochondria. Most interestingly, NAP decreases mitochondrial ubiquitination levels, as well as, increases mitochondrial membrane potential indicating a rescue in mitochondrial function. Overall, we demonstrate that by improving microtubule-mediated traffic, we can avoid mitochondrial-induced damage and thus recover cell homeostasis. These results prove that NAP may be a promising therapeutic lead candidate for neurodegenerative diseases that involve axonal transport failure and mitochondrial impairment as hallmarks, like Parkinson's disease and related disorders.
    Biochimica et Biophysica Acta 10/2013; · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The complex atmospheric and oceanic dynamics within the Greenland, Iceland, and Norwegian Seas (GINS) produce a large portion of the world ocean deep water. Although there are significant interactions between the Arctic Ocean and the GINS which result in the formation of Greenland Sea Deep Water (GSDW), the inflow of Atlantic Water (AW) is also recognized to be a major influence. An extensive historical hydrographic data set for this region has been analyzed using volumetric analysis techniques to determine the mean characteristics of two water classes, the AW and the Arctic Intermediate Water (AIW), on a seasonal basis
    OCEANS '93. Engineering in Harmony with Ocean. Proceedings; 11/1993