A cytidine deaminase edits C to U in transfer RNAs in Archaea.

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
Science (Impact Factor: 31.48). 06/2009; 324(5927):657-9.
Source: PubMed

ABSTRACT All canonical transfer RNAs (tRNAs) have a uridine at position 8, involved in maintaining tRNA tertiary structure. However, the hyperthermophilic archaeon Methanopyrus kandleri harbors 30 (out of 34) tRNA genes with cytidine at position 8. Here, we demonstrate C-to-U editing at this location in the tRNA's tertiary core, and present the crystal structure of a tRNA-specific cytidine deaminase, CDAT8, which has the cytidine deaminase domain linked to a tRNA-binding THUMP domain. CDAT8 is specific for C deamination at position 8, requires only the acceptor stem hairpin for activity, and belongs to a unique family within the "cytidine deaminase-like" superfamily. The presence of this C-to-U editing enzyme guarantees the proper folding and functionality of all M. kandleri tRNAs.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Sequence variation in tRNA genes influences the structure, modification, and stability of tRNA; affects translation fidelity; impacts the activity of numerous isodecoders in metazoans; and leads to human diseases. To comprehensively define the effects of sequence variation on tRNA function, we developed a high-throughput in vivo screen to quantify the activity of a model tRNA, the nonsense suppressor SUP4oc of Saccharomyces cerevisiae. Using a highly sensitive fluorescent reporter gene with an ochre mutation, fluorescence-activated cell sorting of a library of SUP4oc mutant yeast strains, and deep sequencing, we scored 25,491 variants. Unexpectedly, SUP4oc tolerates numerous sequence variations, accommodates slippage in tertiary and secondary interactions, and exhibits genetic interactions that suggest an alternative functional tRNA conformation. Furthermore, we used this methodology to define tRNA variants subject to rapid tRNA decay (RTD). Even though RTD normally degrades tRNAs with exposed 5' ends, mutations that sensitize SUP4oc to RTD were found to be located throughout the sequence, including the anti-codon stem. Thus, the integrity of the entire tRNA molecule is under surveillance by cellular quality control machinery. This approach to assess activity at high throughput is widely applicable to many problems in tRNA biology.
    Genes & Development 08/2014; 28(15):1721-32. · 12.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Here we suggest that the origin of the genetic code, that is to say, the birth of first mRNAs has been triggered by means of a widespread modification of all RNAs (proto-mRNAs and proto-tRNAs), as today observed in the RNA editing and in post-transcriptional modifications of RNAs, which are considered as fossils of this evolutionary stage of the genetic code origin. We consider also that other mechanisms, such as the trans-translation and ribosome frameshifting, could have favoured the transition from an ennuplet code to a triplet code. Therefore, according to our hypothesis all these mechanisms would be reflexive of this period of the evolutionary history of the genetic code.
    Journal of Theoretical Biology 06/2014; · 2.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During maturation, tRNA molecules undergo a series of individual processing steps, ranging from exo- and endonucleolytic trimming reactions at their 5'- and 3'-ends, specific base modifications and intron removal to the addition of the conserved 3'-terminal CCA sequence. Especially in mitochondria, this plethora of processing steps is completed by various editing events, where base identities at internal positions are changed and/or nucleotides at 5'- and 3'-ends are replaced or incorporated. In this review, we will focus predominantly on the latter reactions, where a growing number of cases indicate that these editing events represent a rather frequent and widespread phenomenon. While the mechanistic basis for 5'- and 3'-end editing differs dramatically, both reactions represent an absolute requirement for generating a functional tRNA. Current in vivo and in vitro model systems support a scenario in which these highly specific maturation reactions might have evolved out of ancient promiscuous RNA polymerization or quality control systems.
    International Journal of Molecular Sciences 12/2014; 15(12):23975-23998. · 2.46 Impact Factor

Full-text (2 Sources)

Available from
Sep 2, 2014