Article

Taurine supplementation enhances nutrient-induced insulin secretion in pancreatic mice islets.

Departamento de Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
Diabetes/Metabolism Research and Reviews (Impact Factor: 2.97). 06/2009; 25(4):370-9. DOI: 10.1002/dmrr.959
Source: PubMed

ABSTRACT Taurine (TAU), a naturally occurring sulfur-containing amino acid, is found at high concentrations in plasma and mammalian tissues and regulates osmolarity, ion channel activity, and glucose homeostasis. Several reports have shown that physiological plasma TAU levels seem to be important for adequate beta (beta)-cell function and insulin action, since low concentrations of TAU in the plasma have been reported in the pre-diabetic and diabetic states.
Glucose tolerance and insulin sensitivity were investigated in mice supplemented with 2% (w/v) TAU in their drinking water for 30 days, as well as the insulin secretion from isolated islets stimulated by glucose or L-leucine.
TAU-supplemented mice demonstrated improved glucose tolerance and higher insulin sensitivity, compared to controls (CTL). In addition, their islets secreted more insulin in response to high concentrations of glucose and L-leucine. L-[U-(14)C]leucine oxidation was higher in TAU than in CTL islets, whereas D-[U-(14)C]glucose oxidation, ATP levels, glucose transporter (GLUT) 2 and glucokinase (GCK) protein expressions were similar in both types of islets. The L-type beta(2) subunit voltage-sensitive Ca(2+) channel protein, as well as (45)Ca uptake, were significantly higher in TAU-supplemented than CTL islets. In addition, islets from TAU-supplemented mice secreted more glucagon than CTL islets at low glucose.
TAU supplementation improves glucose tolerance and insulin sensitivity in mice, as well as insulin secretion from isolated islets. The latter effect seems to be, at least in part, dependent on a better Ca(2+) handling by the islets.

1 Bookmark
 · 
81 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Taurine has probed to be involved in a wide range of biological processes and to provide several different important health benefits. Its effects have been revealed to be exerted mainly through its antioxidant and anti-inflammatory effects, among other mechanisms. The present review is aimed to provide a solid body of evidence regarding the beneficial effects of taurine in the context of diabetes and its complications, with an special focus on the cardiovascular health impairments so frequently associated to this disease, so that data from this updated systematic review of the literature, may constitute a base to back up future clinical and epidemiological studies, on the possibilities of taurine supplementation as a useful tool for both prevention and treatment of diabetes complications. We consider results from the different experimental, in vitro studies as well as some clinical ones reviewed, to provide sufficient evidence as to constitute a solid base to back up future clinical and epidemiological studies on the usefulness of taurine supplementation both in the prevention and treatment of diabetes and its complications.
    Nutricion hospitalaria: organo oficial de la Sociedad Espanola de Nutricion Parenteral y Enteral 25(6):910-9. · 1.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: SCOPE: Poor nutrition during the perinatal period is associated with an increased risk for metabolic syndrome in adulthood. Taurine (TAU) regulates β-cell function and glucose homeo-stasis. Here, we assessed the effects of TAU supplementation upon adiposity and glucose control in malnourished mice fed a high-fat diet (HFD). METHODS AND RESULTS: Weaned male C57BL/6J mice were fed a control (14% protein - C) or a protein-restricted (6% protein - R) diet for 6 weeks. Afterwards, mice received or not an HFD for 8 weeks (CH and RH). Half of the HFDmice were supplemented with 5% TAU after weaning (CHT and RHT). Protein restriction led to typical malnutrition features. HFD increased body weight, adiposity, and led to hyperleptinemia, hyperphagia, glucose intolerance, and higher liver glucose output in RH and CH groups. Fasted R mice showed higher plasma adiponectin levels and increased phosphorylation of the AMP-activated protein kinase (p-AMPK) in the liver. These parameters were reduced in RH mice and increased p-AMPK persisted in RHT. TAU prevented obesity and improved glucose tolerance only in CHT, but liver glucose control was ameliorated in both supplemented groups. Better CHT liver glucose control was linked to increased Akt (thymoma viral proto-oncogene/protein kinase B) phosphorylation. CONCLUSION: Malnourished mice fed an HFD developed obesity, glucose intolerance, and increased liver glucose output. TAU preserved only normal liver glucose control in RHT mice, an effect associated with increased liver p-AMPK content.
    Molecular Nutrition & Food Research 12/2012; · 4.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Isolated islets from low-protein (LP) diet rats showed decreased insulin secretion in response to glucose and carbachol (Cch). Taurine (TAU) increases insulin secretion in rodent islets with a positive effect upon the cholinergic pathway. Here, we investigated the effect of TAU administration upon glucose tolerance and insulin release in rats fed on a normal protein diet (17%) without (NP) or with 2.5% of TAU in their drinking water (NPT), and LP diet fed rats (6%) without (LP) or with TAU (LPT). Glucose tolerance was found to be higher in LP, compared to NP rats. However, plasma glucose levels, during ipGTT, in LPT rats were similar to those of controls. Isolated islets from LP rats secreted less insulin in response to increasing glucose concentrations (2.8-22.2 mmol/L) and to 100 μmol/L Cch. This lower secretion was accompanied by a reduction in Cch-induced internal Ca(2+) mobilization. TAU supplementation prevents these alterations, as judged by the higher secretion induced by glucose or Cch in LPT islets. In addition, Ach-M3R, syntaxin 1 and synaptosomal associated protein of 25 kDa protein expressions in LP were lower than in NP islets. The expressions of these proteins in LPT were normalized. Finally, the sarcoendoplasmatic reticulum Ca(2+)-ATPase 3 protein expression was higher in LPT and NPT, compared with controls. In conclusion, TAU supplementation to LP rats prevented alterations in glucose tolerance as well as in insulin secretion from isolated islets. The latter effect involves the normalization of the cholinergic pathway, associated with the preservation of exocytotic proteins.
    The Journal of nutritional biochemistry 05/2011; 23(3):306-12. · 4.29 Impact Factor