Article

Effects of microgravity and hypergravity on platelet functions.

Department of Biological Science and Technology, Beijing University of Aeronautics and Astronautics, 37 Xueyuan Road, Haidian district, Beijing 100083, China.
Thrombosis and Haemostasis (Impact Factor: 6.09). 06/2009; 101(5):902-10. DOI: 10.1160/TH08-11-0750
Source: PubMed

ABSTRACT Many serious thrombotic and haemorrhagic diseases or fatalities have been documented in human being exposed to microgravity or hypergravity environments, such as crewmen in space, roller coaster riders, and aircrew subjected to high-G training. Some possible related organs have been examined to explore the mechanisms underlying these gravity change-related diseases. However, the role of platelets which are the primary players in both thrombosis and haemostasis is unknown. Here we show that platelet aggregation induced by ristocetin or collagen and platelet adhesion to von Willebrand factor (VWF) were significantly decreased after platelets were exposed to simulated microgravity. Conversely, these platelet functions were increased after platelets were exposed to hypergravity. The tail bleeding time in vivo was significantly shortened in mice exposed to high-G force, whereas, was prolonged in hindlimb unloaded mice. Furthermore, three of 23 mice died after 15 minutes of -8 Gx stress. Platelet thrombi disseminated in the heart ventricle and blood vessels in the brain, lung, and heart from the dead mice. Finally, glycoprotein (GP) Ibalpha surface expression and its association with the cytoskeleton were significantly decreased in platelets exposed to simulated microgravity, and obviously increased in hypergravity-exposed platelets. These data indicate that the platelet functions are inhibited in microgravity environments, and activated under high-G conditions, suggesting a novel mechanism for gravity change-related haemorrhagic and thrombotic diseases. This mechanism has important implications for preventing and treating gravity change-related diseases, and also suggests that special attentions should be paid to human actions under different gravity conditions.

0 Bookmarks
 · 
109 Views
  • Platelets 06/2012; · 2.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Maintaining a good health requires the maintenance of a body homeostasis which largely depends on correct functioning of thyroid gland. The cells of the thyroid tissue are strongly sensitive to hypogravity, as already proven in mice after returning to the earth from long-term space missions. Here we studied whether hypergravity may be used to counteract the physiological deconditioning of long-duration spaceflight. We investigated the influence of hypergravity on key lipids and proteins involved in thyroid tissue function. We quantified cholesterol (CHO) and different species of sphingomyelin (SM) and ceramide, analysed thyrotropin (TSH) related molecules such as thyrotropin-receptor (TSHR), cAMP, Caveolin-1 and molecule signalling such as Signal transducer and activator of transcription-3 (STAT3). The hypergravity treatment resulted in the upregulation of the TSHR and Caveolin-1 and downregulation of STAT3 without changes of cAMP. TSHR lost its specific localization and spread throughout the cell membrane; TSH treatment facilitated the shedding of α subunit of TSHR and its releasing into the extracellular space. No specific variations were observed for each species of SM and ceramide. Importantly, the level of CHO was strongly reduced. In conclusion, hypergravity conditions induce change in CHO and TSHR of thyroid gland. The possibility that lipid rafts are strongly perturbed by hypergravity-induced CHO depletion by influencing TSH-TSHR interaction was discussed.
    PLoS ONE 01/2014; 9(5):e98250. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Space travel presents unlimited opportunities for exploration and discovery, but requires better understanding of the biological consequences of long-term exposure to spaceflight. Immune function in particular is relevant for space travel. Human immune responses are weakened in space, with increased vulnerability to opportunistic infections and immune-related conditions. In addition, microorganisms can become more virulent in space, causing further challenges to health. To understand these issues better and to contribute to design of effective countermeasures, we used the Drosophila model of innate immunity to study immune responses in both hypergravity and spaceflight. Focusing on infections mediated through the conserved Toll and Imd signaling pathways, we found that hypergravity improves resistance to Toll-mediated fungal infections except in a known gravitaxis mutant of the yuri gagarin gene. These results led to the first spaceflight project on Drosophila immunity, in which flies that developed to adulthood in microgravity were assessed for immune responses by transcription profiling on return to Earth. Spaceflight alone altered transcription, producing activation of the heat shock stress system. Space flies subsequently infected by fungus failed to activate the Toll pathway. In contrast, bacterial infection produced normal activation of the Imd pathway. We speculate on possible linkage between functional Toll signaling and the heat shock chaperone system. Our major findings are that hypergravity and spaceflight have opposing effects, and that spaceflight produces stress-related transcriptional responses and results in a specific inability to mount a Toll-mediated infection response.
    PLoS ONE 01/2014; 9(1):e86485. · 3.73 Impact Factor

Full-text

View
1 Download
Available from