Article

Autism genome-wide copy number variation reveals ubiquitin and neuronal genes.

Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.
Nature (Impact Factor: 42.35). 05/2009; 459(7246):569-73. DOI: 10.1038/nature07953
Source: PubMed

ABSTRACT Autism spectrum disorders (ASDs) are childhood neurodevelopmental disorders with complex genetic origins. Previous studies focusing on candidate genes or genomic regions have identified several copy number variations (CNVs) that are associated with an increased risk of ASDs. Here we present the results from a whole-genome CNV study on a cohort of 859 ASD cases and 1,409 healthy children of European ancestry who were genotyped with approximately 550,000 single nucleotide polymorphism markers, in an attempt to comprehensively identify CNVs conferring susceptibility to ASDs. Positive findings were evaluated in an independent cohort of 1,336 ASD cases and 1,110 controls of European ancestry. Besides previously reported ASD candidate genes, such as NRXN1 (ref. 10) and CNTN4 (refs 11, 12), several new susceptibility genes encoding neuronal cell-adhesion molecules, including NLGN1 and ASTN2, were enriched with CNVs in ASD cases compared to controls (P = 9.5 x 10(-3)). Furthermore, CNVs within or surrounding genes involved in the ubiquitin pathways, including UBE3A, PARK2, RFWD2 and FBXO40, were affected by CNVs not observed in controls (P = 3.3 x 10(-3)). We also identified duplications 55 kilobases upstream of complementary DNA AK123120 (P = 3.6 x 10(-6)). Although these variants may be individually rare, they target genes involved in neuronal cell-adhesion or ubiquitin degradation, indicating that these two important gene networks expressed within the central nervous system may contribute to the genetic susceptibility of ASD.

2 Followers
 · 
277 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is a complex and multifactorial disease that occurs as a result of the interaction between "obesogenic" environmental factors and genetic components. Although the genetic component of obesity is clear from the heritability studies, the genetic basis remains largely elusive. Successes have been achieved in identifying the causal genes for monogenic obesity using animal models and linkage studies, but these approaches are not fruitful for polygenic obesity. The developments of genome-wide association approach have brought breakthrough discovery of genetic variants for polygenic obesity where tens of new susceptibility loci were identified. However, the common SNPs only accounted for a proportion of heritability. The arrival of NGS technologies and completion of 1000 Genomes Project have brought other new methods to dissect the genetic architecture of obesity, for example, the use of exome genotyping arrays and deep sequencing of candidate loci identified from GWAS to study rare variants. In this review, we summarize and discuss the developments of these genetic approaches in human obesity.
    Human Genetics 02/2015; DOI:10.1007/s00439-015-1533-x · 4.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Substantial health disparities exist between African Americans and Caucasians in the United States. Copy number variations (CNVs) are one form of human genetic variations that have been linked with complex diseases and often occur at different frequencies among African Americans and Caucasian populations. Here, we aimed to investigate whether CNVs with differential frequencies can contribute to health disparities from the perspective of gene networks. We inferred network clusters from human gene/protein networks based on two different data sources. We then evaluated each network cluster for the occurrences of known pathogenic genes and genes located in CNVs with different population frequencies, and used false discovery rates to rank network clusters. This approach let us identify five clusters enriched with known pathogenic genes and with genes located in CNVs with different frequencies between African Americans and Caucasians. These clustering patterns predict two candidate causal genes located in four population-specific CNVs that play potential roles in health disparities.
    03/2015; 3:e677. DOI:10.7717/peerj.677
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism spectrum disorder (ASD) affects as many as 1 in 68 children and is said to be the fastest-growing serious developmental disability in the United States. There is currently no medical cure or diagnostic test for ASD. Furthermore, the U.S. Food and Drug Administration has yet to approve a single drug for the treatment of autism's core symptoms. Despite numerous genome studies and the identification of hundreds of genes that may cause or predispose children to ASD, the pathways underlying the pathogenesis of idiopathic ASD still remain elusive. Post-mortem brain samples, apart from being difficult to obtain, offer little insight into a disorder that arises through the course of development. Furthermore, ASD is a disorder of highly complex, human-specific behaviors, making it difficult to model in animals. Stem cell models of ASD can be generated by performing skin biopsies of ASD patients and then dedifferentiating these fibroblasts into human-induced pluripotent stem cells (hiPSCs). iPSCs closely resemble embryonic stem cells and retain the unique genetic signature of the ASD patient from whom they were originally derived. Differentiation of these iPSCs into neurons essentially recapitulates the ASD patient's neuronal development in a dish, allowing for a patient-specific model of ASD. Here we review our current understanding of the underlying neurobiology of ASD and how the use of stem cells can advance this understanding, possibly leading to new therapeutic avenues.
    The Yale journal of biology and medicine 03/2015; 88(1):5-16.

Full-text (3 Sources)

Download
100 Downloads
Available from
May 27, 2014