Article

Neural Dynamics in Inferior Temporal Cortex during a Visual Working Memory Task

Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 05/2009; 29(17):5494-507. DOI: 10.1523/JNEUROSCI.5785-08.2009
Source: PubMed

ABSTRACT Intelligent organisms are capable of tracking objects even when they temporarily disappear from sight, a cognitive capacity commonly referred to as visual working memory (VWM). The neural basis of VWM has been the subject of significant scientific debate, with recent work focusing on the relative roles of posterior visual areas, such as the inferior temporal cortex (ITC), and the prefrontal cortex. Here we reexamined the contribution of ITC to VWM by recording from highly selective individual ITC neurons as monkeys engaged in multiple versions of an occlusion-based memory task. As expected, we found strong evidence for a role of ITC in stimulus encoding. We also found that almost half of these selective cells showed stimulus-selective delay period modulation, with a small but significant fraction exhibiting differential responses even in the presence of simultaneously visible interfering information. When we combined the informational content of multiple neurons, we found that the accuracy with which we could decode memory content increased drastically. The memory epoch analyses suggest that behaviorally relevant visual memories were reinstated in ITC. Furthermore, we observed a population-wide enhancement of neuronal response to a match stimulus compared with the same stimulus presented as a nonmatch. The single-cell enhancement preceded any match effects identified in the local field potential, leading us to speculate that enhancement is the result of neural processing local to ITC. Moreover, match enhancement was only later followed by the more commonly observed match suppression. Altogether, the data support the hypothesis that, when a stimulus is held in memory, ITC neurons are actively biased in favor of task-relevant visual representations and that this bias can immediately impact subsequent recognition events.

0 Followers
 · 
89 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Persistent activity and match effects are widely regarded as neuronal correlates of short-term storage and manipulation of information, with the first serving active maintenance and the latter supporting the comparison between memory contents and incoming sensory information. The mechanistic and functional relationship between these two basic neurophysiological signatures of working memory remains elusive. We propose that match signals are generated as a result of transient changes in local network excitability brought about by persistent activity. Neurons more active will be more excitable, and thus more responsive to external inputs. Accordingly, network responses are jointly determined by the incoming stimulus and the ongoing pattern of persistent activity. Using a spiking model network, we show that this mechanism is able to reproduce most of the experimental phenomenology of match effects as exposed by single-cell recordings during delayed-response tasks. The model provides a unified, parsimonious mechanistic account of the main neuronal correlates of working memory, makes several experimentally testable predictions, and demonstrates a new functional role for persistent activity.
    PLoS Computational Biology 02/2015; 11(2):e1004059. DOI:10.1371/journal.pcbi.1004059 · 4.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human efficiency in processing incoming stimuli (in terms of speed and/or accuracy) is typically enhanced by previous exposure to the same, or closely related stimuli-a phenomenon referred to as priming. In spite of the large body of knowledge accumulated in behavioral studies about the conditions conducive to priming, and its relationship with other forms of memory, the underlying neuronal correlates of priming are still under debate. The idea has repeatedly been advanced that a major neuronal mechanism supporting behaviorally-expressed priming is repetition suppression, a widespread reduction of spiking activity upon stimulus repetition which has been routinely exposed by single-unit recordings in non-human primates performing delayed-response, as well as passive fixation tasks. This proposal is mainly motivated by the observation that, in human fMRI studies, priming is associated to a significant reduction of the BOLD signal (widely interpreted as a proxy of the level of spiking activity) upon stimulus repetition. Here, we critically re-examine a large part of the electrophysiological literature on repetition suppression in non-human primates and find that repetition suppression is systematically accompanied by stimulus-selective delay period activity, together with repetition enhancement, an increase of spiking activity upon stimulus repetition in small neuronal populations. We argue that repetition enhancement constitutes a more viable candidate for a putative neuronal substrate of priming, and propose a minimal framework that links together, mechanistically and functionally, repetition suppression, stimulus-selective delay activity and repetition enhancement.
    Frontiers in Psychology 01/2014; 5:1590. DOI:10.3389/fpsyg.2014.01590 · 2.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Maintaining information in visual working memory is reliably indexed by the contralateral delay activity (CDA) - a sustained modulation of the event-related potential (ERP) with a topographical maximum over posterior scalp regions contralateral to the memorized input. Based on scalp topography, it is hypothesized that the CDA reflects neural activity in the parietal cortex, but the precise cortical origin of underlying electric activity was never determined. Here we combine ERP recordings with magnetoencephalography based source localization to characterize the cortical current sources generating the CDA. Observers performed a cued delayed match to sample task where either the color or the relative position of colored dots had to be maintained in memory. A detailed source-localization analysis of the magnetic activity in the retention interval revealed that the magnetic analog of the CDA (mCDA) is generated by current sources in the parietal cortex. Importantly, we find that the mCDA also receives contribution from current sources in the ventral extrastriate cortex that display a time-course similar to the parietal sources. On the basis of the magnetic responses, forward modeling of ERP data reveals that the ventral sources have non-optimal projections and that these sources are therefore concealed in the ERP by overlapping fields with parietal projections. The present observations indicate that visual working memory maintenance, as indexed by the CDA, involves the parietal cortical regions as well as the ventral extrastriate regions, which code the sensory representation of the memorized content. Copyright © 2015. Published by Elsevier Inc.
    NeuroImage 02/2015; 110. DOI:10.1016/j.neuroimage.2015.01.059 · 6.13 Impact Factor

Preview

Download
0 Downloads
Available from