Neurotransmitters drive combinatorial multistate postsynaptic density networks.

Genes to Cognition, Wellcome Trust Sanger Institute, Cambridgeshire, UK.
Science Signaling (Impact Factor: 7.65). 02/2009; 2(68):ra19. DOI: 10.1126/scisignal.2000102
Source: PubMed

ABSTRACT The mammalian postsynaptic density (PSD) comprises a complex collection of approximately 1100 proteins. Despite extensive knowledge of individual proteins, the overall organization of the PSD is poorly understood. Here, we define maps of molecular circuitry within the PSD based on phosphorylation of postsynaptic proteins. Activation of a single neurotransmitter receptor, the N-methyl-D-aspartate receptor (NMDAR), changed the phosphorylation status of 127 proteins. Stimulation of ionotropic and metabotropic glutamate receptors and dopamine receptors activated overlapping networks with distinct combinatorial phosphorylation signatures. Using peptide array technology, we identified specific phosphorylation motifs and switching mechanisms responsible for the integration of neurotransmitter receptor pathways and their coordination of multiple substrates in these networks. These combinatorial networks confer high information-processing capacity and functional diversity on synapses, and their elucidation may provide new insights into disease mechanisms and new opportunities for drug discovery.

Download full-text


Available from: Seth G N Grant, Jul 06, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the discovery of protein phosphorylation as an important modulator of many cellular processes, the involvement of protein kinases in diseases, such as cancer, diabetes, cardiovascular diseases, and central nervous system pathologies, has been extensively documented. Our understanding of many disease pathologies at the molecular level, therefore, requires the comprehensive identification of substrates targeted by protein kinases. In this review, we focus on recent techniques for kinase substrate identification in high throughput, in particular on genetic and proteomic approaches. Each method with its inherent advantages and limitations is discussed.
    04/2013; 8(2). DOI:10.1007/s11515-013-1257-z
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Traf2 and NcK interacting kinase (TNiK) contains serine-threonine kinase and scaffold domains and has been implicated in cell proliferation and glutamate receptor regulation in vitro. Here we report its role in vivo using mice carrying a knock-out mutation. TNiK binds protein complexes in the synapse linking it to the NMDA receptor (NMDAR) via AKAP9. NMDAR and metabotropic receptors bidirectionally regulate TNiK phosphorylation and TNiK is required for AMPA expression and synaptic function. TNiK also organizes nuclear complexes and in the absence of TNiK, there was a marked elevation in GSK3β and phosphorylation levels of its cognate phosphorylation sites on NeuroD1 with alterations in Wnt pathway signaling. We observed impairments in dentate gyrus neurogenesis in TNiK knock-out mice and cognitive testing using the touchscreen apparatus revealed impairments in pattern separation on a test of spatial discrimination. Object-location paired associate learning, which is dependent on glutamatergic signaling, was also impaired. Additionally, TNiK knock-out mice displayed hyperlocomotor behavior that could be rapidly reversed by GSK3β inhibitors, indicating the potential for pharmacological rescue of a behavioral phenotype. These data establish TNiK as a critical regulator of cognitive functions and suggest it may play a regulatory role in diseases impacting on its interacting proteins and complexes.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 10/2012; 32(40):13987-13999. DOI:10.1523/JNEUROSCI.2433-12.2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: N-methyl-D-aspartate receptors (NMDARs) are key components of neural signaling, playing roles in synaptic transmission and in the synaptic plasticity thought to underlie learning and memory. NMDAR activation can also have neurotoxic consequences contributing to several forms of neurodegeneration. Additionally, NMDARs can modulate neuronal function and regulate the ability of synapses to undergo synaptic plasticity. Evidence gathered over the past 20 years strongly supports the idea that untimely activation of NMDARs impairs the induction of long-term potentiation (LTP) by a form of metaplasticity. This metaplasticity can be triggered by multiple stimuli including physiological receptor activation, and metabolic and behavioral stressors. These latter findings raise the possibility that NMDARs contribute to cognitive dysfunction associated with neuropsychiatric disorders. This paper examines NMDAR metaplasticity and its potential role in cognition. Recent studies using NMDAR antagonists for therapeutic purposes also raise the possibility that metaplasticity may contribute to clinical effects of certain drugs.
    Neuroscience & Biobehavioral Reviews 03/2012; 36(3):989-1000. DOI:10.1016/j.neubiorev.2011.12.011