A Search for Wide Companions to the Extrasolar Planetary System HR 8799

The Astrophysical Journal (Impact Factor: 6.73). 04/2009; DOI: 10.1088/0004-637X/709/1/342
Source: arXiv

ABSTRACT The extrasolar planetary system around HR 8799 is the first multiplanet system ever imaged. It is also, by a wide margin, the highest mass system with >27 Jupiters of planetary mass past 25 AU. This is a remarkable system with no analogue with any other known planetary system. In the first part of this paper we investigate the nature of two faint objects imaged near the system. These objects are considerably fainter (H=20.4, and 21.6 mag) and more distant (projected separations of 612, and 534 AU) than the three known planetary companions b, c, and d (68-24 AU). It is possible that these two objects could be lower mass planets (of mass ~5 and ~3 Jupiters) that have been scattered to wider orbits. We make the first direct comparison of newly reduced archival Gemini adaptive optics images to archival HST/NICMOS images. With nearly a decade between these epochs we can accurately assess the proper motion nature of each candidate companion. We find that both objects are unbound to HR 8799 and are background. We estimate that HR 8799 has no companions of H<22 from ~5-15 arcsec. Any scattered giant planets in the HR 8799 system are >600 AU or less than 3 Jupiters in mass. In the second part of this paper we carry out a search for wider common proper motion objects. While we identify no bound companions to HR 8799, our search yields 16 objects within 1 degree in the NOMAD catalog and POSS DSS images with similar (+/-20 mas/yr) proper motions to HR 8799, three of which warrant follow-up observations. Comment: 22 pages, 8 figures, submitted to the Astrophysical Journal

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Direct imaging of exoplanetary systems is a powerful technique that can reveal Jupiter-like planets in wide orbits, can enable detailed characterization of planetary atmospheres, and is a key step toward imaging Earth-like planets. Imaging detections are challenging because of the combined effect of small angular separation and large luminosity contrast between a planet and its host star. High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units. Multi-epoch data show counter clockwise orbital motion for all three imaged planets. The low luminosity of the companions and the estimated age of the system imply planetary masses between 5 and 13 times that of Jupiter. This system resembles a scaled-up version of the outer portion of our solar system.
    Science 12/2008; 322(5906):1348-52. · 31.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The U.S. Naval Observatory (USNO) announces the release of the first version of the Naval Observatory Merged Astrometric Dataset (NOMAD). The 100 GB dataset contains astrometric and photometric data for over 1 billion stars derived from the Hipparcos, Tycho-2, UCAC2, and USNO-B catalogs for astrometry and optical photometry, supplemented by 2MASS near-infrared photometry. For each unique star the "best" astrometric and photometric data are chosen from the source catalogs and merged into a single dataset. A sequence of priorities is followed and NOMAD contains flags to identify the source catalogs and gives cross-reference identifications. This first release of NOMAD is not a compiled catalog; that is, if a star is identified in more than 1 of the above mentioned catalogs, only 1 catalog entry is chosen. Thus the local and global systematic errors of the various source catalogs will be present in this version of NOMAD. All source catalogs astrometric data are on the International Celestial Reference System within the limitations of the source catalogs. For more information and data retrieval see our homepage
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The recent discoveries of massive planets on ultra-wide orbits of HR 8799 (Marois et al. 2008) and Fomalhaut (Kalas et al. 2008) present a new challenge for planet formation theorists. Our goal is to figure out which of three giant planet formation mechanisms--core accretion (with or without migration), scattering from the inner disk, or gravitational instability--could be responsible for Fomalhaut b, HR 8799 b, c and d, and similar planets discovered in the future. This paper presents the results of numerical experiments comparing the long-period planet formation efficiency of each possible mechanism in model A star, G star and M star disks. First, a simple core accretion simulation shows that planet cores forming beyond 35 AU cannot reach critical mass, even under the most favorable conditions one can construct. Second, a set of N-body simulations demonstrates that planet-planet scattering does not create stable, wide-orbit systems such as HR 8799. Finally, a linear stability analysis verifies previous work showing that global spiral instabilities naturally arise in high-mass disks. We conclude that massive gas giants on stable orbits with semimajor axes greater than 35 AU form by gravitational instability in the disk. We recommend that observers examine the planet detection rate as a function of stellar age, controlling for planet dimming with time. If planet detection rate is found to be independent of stellar age, it would confirm our prediction that gravitational instability is the dominant mode of producing detectable planets on wide orbits. We also predict that the occurrence ratio of long-period to short-period gas giants should be highest for M dwarfs due to the inefficiency of core accretion and the expected small fragment mass in their disks. Comment: Accepted for publication in the Astrophysical Journal. 14 pages, including 3 figures and 1 table
    The Astrophysical Journal 09/2009; · 6.73 Impact Factor


Available from