A prototype hybrid intraoperative probe for ovarian cancer detection

University of Connecticut, Department of Electrical and Computer Engineering, Storrs, CT 06269, USA.
Optics Express (Impact Factor: 3.49). 05/2009; 17(9):7245-58. DOI: 10.1364/OE.17.007245
Source: PubMed


A novel prototype intraoperative system combining positron detection and optical coherence tomography (OCT) imaging has been developed for early ovarian cancer detection. The probe employs eight plastic scintillating fiber tips for preferential detection of local positron activity surrounding a central scanning OCT fiber providing volumetric imaging of tissue structure in regions of high radiotracer uptake. Characterization measurements of positron sensitivity, spatial response, and position mapping are presented for Tl(204)/Cs(137) sources as well as 18F-FDG. In conjunction with co-registered frequency domain OCT measurements the results demonstrate the potential for a miniaturized laparoscopic probe offering simultaneous functional localization and structural imaging for improved early cancer detection.

4 Reads
  • Source
    • "Characterization parameters of the OCT system have been reported previously [30,32]. Briefly, the axial and transverse resolutions of the system are 12μm and 25μm respectively. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ovarian cancer has the lowest survival rate of the gynecologic cancers because it is predominantly diagnosed in Stages III or IV due to the lack of reliable symptoms, as well as the lack of efficacious screening techniques. Detection before the malignancy spreads or at the early stage would greatly improve the survival and benefit patient health. In this report, we present an integrated optical coherence tomography (OCT), ultrasound (US) and photoacoustic imaging (PAI) prototype endoscopy system for ovarian tissue characterization. The overall diameter of the prototype endoscope is 5 mm which is suitable for insertion through a standard 5-12.5mm endoscopic laparoscopic port during minimally invasive surgery. It consists of a ball-lensed OCT sample arm probe, a multimode fiber having the output end polished at 45 degree angle so as to deliver the light perpendicularly for PAI, and a high frequency ultrasound transducer with 35MHz center frequency. System characterizations of OCT, US and PAI are presented. In addition, results obtained from ex vivo porcine and human ovarian tissues are presented. The optical absorption contrast provided by PAI, the high resolution subsurface morphology provided by OCT, and the deeper tissue structure imaged by US demonstrate the synergy of the combined endoscopy and the superior performance of this hybrid device over each modality alone in ovarian tissue characterization.
    Biomedical Optics Express 09/2011; 2(9):2551-61. DOI:10.1364/BOE.2.002551 · 3.65 Impact Factor
  • Source
    • "In our previous publication [28,29], we introduced a novel hybrid intraoperative imaging device, which integrates multiple scintillating fibers and an OCT imaging probe for mapping the local uptake of 18F-FDG and imaging morphological details of the rabbit atherosclerotic model and ovary. This hybrid imager has potential applications in ovarian cancer screening and diagnosis during minimally invasive endoscope procedures. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ovarian cancer has the lowest survival rate of the gynecologic cancers because it is predominantly diagnosed in the late stages due to the lack of reliable symptoms and efficacious screening techniques. A novel hybrid intraoperative probe has been developed and evaluated for its potential role in detecting and characterizing ovarian tissue. The hybrid intraoperative dual-modality device consists of multiple scintillating fibers and an optical coherence tomography imaging probe for simultaneously mapping the local activities of (18)F-FDG uptake and imaging of local morphological changes of the ovary. Ten patients were recruited to the study and a total of 18 normal, abnormal and malignant ovaries were evaluated ex vivo using this device. Positron count rates of 7.5/8.8-fold higher were found between malignant and abnormal/normal ovaries. OCT imaging of malignant and abnormal ovaries revealed many detailed morphologic features that could be potentially valuable for evaluating local regions with high metabolic activities and detecting early malignant changes in the ovary. These initial results have demonstrated that our novel hybrid imager has great potential for ovarian cancer detection and characterization during minimally invasive endoscopic procedures.
    Biomedical Optics Express 07/2011; 2(7):1918-30. DOI:10.1364/BOE.2.001918 · 3.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study used optical coherence tomography (OCT) compared to scanning electron microscopy (SEM) and optical microscopy (OM) to evaluate qualitatively crack propagation and final fracture in restorative composite materials - Filtek Z250 and Filtek Z350 (3M ESPE) - with fiber reinforcement after cyclic loading. Samples were made using a split mold. Initially, 3-point bending tests were performed to determine the maximum force and tension at the fracture moment using samples without fiber reinforcement. Then, mechanical cycling tests were performed using samples with glass fiber embedded internally. The failures were analyzed using the 3 methods described before. OCT permitted good characterization of internal crack propagation of the dental composites, which, however, could not be visualized by either SEM or OM. OCT was proven to be laboratory research tool that is easy to use, does not require any specific preparation of the samples, and is less expensive than SEM.
    Brazilian dental journal 01/2010; 21(5):420-7. DOI:10.1590/S0103-64402010000500008
Show more

Similar Publications