Article

Use of wound dressings with soft silicone adhesive technology.

North East Wales NHS Trust, Wrexham.
Paediatric nursing 04/2009; 21(3):38-43. DOI: 10.7748/paed2009.04.21.3.38.c7037
Source: PubMed

ABSTRACT To evaluate how pain, during and in-between dressing changes, is affected by the introduction of Mepilex Border Lite, a wound dressing manufactured by Mölnlycke Health Care using Safetac soft silicone adhesive technology, to the treatment of different types of paediatric wounds/skin injuries.
Wounds/skin injuries that met the criteria for inclusion in the study were dressed with Mepilex Border Lite. Patients were followed for six weeks or until their wounds/skin injuries had healed, whichever occurred earlier. At each dressing change, pain severity before and during dressing removal was rated by the patient and the investigator on a scale from zero (no pain at all) to ten (worst pain ever). Other variables measured included: signs of trauma to wound/skin injury and surrounding skin, the proportion of viable/non-viable tissue, the quantity and appearance of exudate, odour, and clinical signs of infection. At the final dressing change, patients and investigators completed questionnaires to rate the dressing performance.
Mean pain severity scores were significantly lower (p < or = 0.003) at the first dressing change than at baseline. Over 99.5 per cent of the Mepilex Border Lite dressing changes were reported to be atraumatic and more than half of the wounds healed within the study period. Conformability, ease of use, ease of removal, patient comfort, and overall experience with the dressing were rated as 'good' to 'very good' at the vast majority of final visit evaluations.
This study provides further evidence of the ability of dressings with Safetac soft silicone adhesive technology to minimise trauma and pain and demonstrates the ability of Mepilex Border Lite to overcome the clinical challenges associated with the use of dressings on the wounds/skin injuries of paediatric patients.

4 Bookmarks
 · 
430 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Significance: The increasing complexity of medical and surgical care provided to pediatric patients has resulted in a population at significant risk for complications such as pressure ulcers, nonhealing surgical wounds, and moisture-associated skin damage. Wound care practices for neonatal and pediatric patients, including the choice of specific dressings or other wound care products, are currently based on a combination of provider experience and preference and a small number of published clinical guidelines based on expert opinion; rigorous evidence-based clinical guidelines for wound management in these populations is lacking. Recent Advances: Advances in the understanding of the pathophysiology of wound healing have contributed to an ever-increasing number of specialized wound care products, most of which are predominantly marketed to adult patients and that have not been evaluated for safety and efficacy in the neonatal and pediatric populations. This review aims to discuss the available data on the use of both more traditional wound care products and newer wound care technologies in these populations, including medical-grade honey, nanocrystalline silver, and soft silicone-based adhesive technology. Critical Issues: Evidence-based wound care practices and demonstration of the safety, efficacy, and appropriate utilization of available wound care dressings and products in the neonatal and pediatric populations should be established to address specific concerns regarding wound management in these populations. Future Directions: The creation and implementation of evidence-based guidelines for the treatment of common wounds in the neonatal and pediatric populations is essential. In addition to an evaluation of currently marketed wound care dressings and products used in the adult population, newer wound care technologies should also be evaluated for use in neonates and children. In addition, further investigation of the specific pathophysiology of wound healing in neonates and children is indicated to promote the development of wound care dressings and products with specific applications in these populations.
    Advances in wound care. 04/2014; 3(4):324-334.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Premature infants require, as part of their care, devices such as monitors and temperature probes to be attached to their skin. However, because of immaturity of the skin, they are especially vulnerable to medical adhesive-related skin injury. This case discusses the application of a hydrocolloid (pectin) barrier between the adhesive surface of a silver reflective patch covering thermistor probe and the neonate's skin resulting in medical adhesive skin injury (epidermal stripping). The use of this pectin barrier proved to be a suitable surface to secure the temperature probe and avoid further medical adhesive-related skin injury.
    Journal of wound, ostomy, and continence nursing: official publication of The Wound, Ostomy and Continence Nurses Society / WOCN 01/2014; 41(3):219-221. · 1.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Traditional wound dressings, including cotton gauze, absorbent pads and bandages, can cause trauma and pain to wounds during dressing changes, leading to a variety of physical and psychosocial sequelae. The aim of this study was to adapt an in vitro model of adherence to evaluate the effects of various methods to theoretically reduce the adherence of wound dressings. Gelatin in liquid form was cast onto poly(ethylene terephthalate) (PET) fabric and allowed to solidify and progressively dry to simulate wound desiccation in the clinical setting. A 180° peel test of PET from the gelatin slab yielded adherence data of peeling energy. The peeling energy of PET increased with the drying time. It was possible to reduce the force by drying at 75% relative humidity (RH). After drying for 24h, either 500μL of water or surfactant solution was added onto the PET surface (16×60mm(2)). The peeling energy decreased dramatically with wetting and there was no significant difference between water and surfactant. As a long-term strategy for decreasing adherence, a thin layer of polyacrylamide (PAM) hydrogel was deposited onto PET fabric via UV irradiation. This resulted in a much lower peeling energy without severely compromising fabric flexibility. This hydrogel layer could also serve as a reservoir for bioactive and antimicrobial agents which could be sustainably released to create a microbe-free microenvironment for optimized wound healing.
    Burns: journal of the International Society for Burn Injuries 01/2014; · 1.95 Impact Factor

Full-text

Download
112 Downloads
Available from
May 22, 2014