Huang, J. et al. RAD18 transmits DNA damage signalling to elicit homologous recombination repair. Nature Cell Biol. 11, 592-603

Department of Therapeutic Radiology, Yale University School of Medicine, P.O. Box 208040, New Haven, CT 06520, USA.
Nature Cell Biology (Impact Factor: 19.68). 05/2009; 11(5):592-603. DOI: 10.1038/ncb1865
Source: PubMed


To maintain genome stability, cells respond to DNA damage by activating signalling pathways that govern cell-cycle checkpoints and initiate DNA repair. Cell-cycle checkpoint controls should connect with DNA repair processes, however, exactly how such coordination occurs in vivo is largely unknown. Here we describe a new role for the E3 ligase RAD18 as the integral component in translating the damage response signal to orchestrate homologous recombination repair (HRR). We show that RAD18 promotes homologous recombination in a manner strictly dependent on its ability to be recruited to sites of DNA breaks and that this recruitment relies on a well-defined DNA damage signalling pathway mediated by another E3 ligase, RNF8. We further demonstrate that RAD18 functions as an adaptor to facilitate homologous recombination through direct interaction with the recombinase RAD51C. Together, our data uncovers RAD18 as a key factor that orchestrates HRR through surveillance of the DNA damage signal.

30 Reads
  • Source
    • "Previous studies have indicated that RNF8 may promote HR under certain circumstances. Namely, RNF8 is important for cellular resistance to replication stress, (41,42), meiosis (43), as well as HR in cells co-depleted of BRCA1 and 53BP1 (44). However, the influence of RNF8 depletion on HR in cells deficient in BRCA1 (i.e. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The E3 ubiquitin ligase RNF168 is a DNA damage response (DDR) factor that promotes monoubiquitination of H2A/H2AX at K13/15, facilitates recruitment of other DDR factors (e.g. 53BP1) to DNA damage, and inhibits homologous recombination (HR) in cells deficient in the tumor suppressor BRCA1. We have examined the domains of RNF168 important for these DDR events, including chromosomal HR that is induced by several nucleases (I-SceI, CAS9-WT and CAS9-D10A), since the inducing nuclease affects the relative frequency of distinct repair outcomes. We found that an N-terminal fragment of RNF168 (1-220/N221*) efficiently inhibits HR induced by each of these nucleases in BRCA1 depleted cells, and promotes recruitment of 53BP1 to DNA damage and H2AX monoubiquitination at K13/15. Each of these DDR events requires a charged residue in RNF168 (R57). Notably, RNF168-N221* fails to self-accumulate into ionizing radiation induced foci (IRIF). Furthermore, expression of RNF168 WT and N221* can significantly bypass the role of another E3 ubiquitin ligase, RNF8, for inhibition of HR in BRCA1 depleted cells, and for promotion of 53BP1 IRIF. We suggest that the ability for RNF168 to promote H2A/H2AX monoubiquitination and 53BP1 IRIF, but not RNF168 self-accumulation into IRIF, is important for inhibition of HR in BRCA1 deficient cells.
    Nucleic Acids Research 05/2014; 42(12). DOI:10.1093/nar/gku421 · 9.11 Impact Factor
  • Source
    • "Acid chromatin fractionation was carried out following the procedures described (37). Briefly, cells were washed with PBS buffer and lysed in modified RIPA buffer described above. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Histone H2A ubiquitination plays critical roles in transcriptional repression and deoxyribonucleic acid (DNA) damage response. More attention has been focused on ubiquitin E3 ligases of H2A, however, less is known about the negative regulators of H2A ubiquitination. Here we identified HSCARG as a new negative regulatory protein for H2A ubiquitination and found a possible link between regulator of H2A ubiquitination and cell cycle. Mechanistically, HSCARG interacts with polycomb repressive complex 1 (PRC1) and deubiquitinase USP7 and inhibits PRC1 ubiquitination in a USP7-dependent manner. As ubiquitination of PRC1 is critical for its E3 ligase activity toward H2A, HSCARG and USP7 are further shown to decrease the level of H2A ubiquitination. Moreover, we demonstrated that HSCARG is involved in DNA damage response through affecting the level of H2A ubiquitination and localization of RAP80 at lesion points. Knockout of HSCARG results in persistent activation of checkpoint signaling and leads to cell cycle arrest. This study unravels a novel mechanism for the regulation of H2A ubiquitination and elucidates how regulators of H2A ubiquitination affect cell cycle.
    Nucleic Acids Research 04/2014; 42(9). DOI:10.1093/nar/gku230 · 9.11 Impact Factor
  • Source
    • "RNF8 and RNF168 dependent K63-ubiquitylation mediates recruitment of the RAP80-ABRA1-BRCA1 complex and the accumulation of 53BP1 to DNA lesions [5], [6], [7], [8], [10], [11]. RNF8 dependent K63-ubiquitylation also promotes binding of RAD18, which in turn mediates recruitment of the homologous recombination (HR) factor RAD51C [12]. Defects in RNF8 or RNF168 impair K63-ubiquitylation and recruitment of these essential DNA repair factors resulting in increased sensitivity to IR-induced DSBs. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The cellular response to DNA double strand breaks (DSBs) involves the ordered assembly of repair proteins at or near sites of damage. This process is mediated through post-translational protein modifications that include both phosphorylation and ubiquitylation. Recent data have demonstrated that recruitment of the repair proteins BRCA1, 53BP1, and RAD18 to ionizing irradiation (IR) induced DSBs is dependent on formation of non-canonical K63-linked polyubiquitin chains by the RNF8 and RNF168 ubiquitin ligases. Here we report a novel role for K63-ubiquitylation in response to replication-associated DSBs that contributes to both cell survival and maintenance of genome stability. Suppression of K63-ubiquitylation markedly increases large-scale mutations and chromosomal aberrations in response to endogenous or exogenous replication-associated DSBs. These effects are associated with an S-phase specific defect in DNA repair as revealed by an increase in residual 53BP1 foci. Use of both knockdown and knockout cell lines indicates that unlike the case for IR-induced DSBs, the requirement for K63-ubiquitylation for the repair of replication associated DSBs was found to be RNF8-independent. Our findings reveal the existence of a novel K63-ubiquitylation dependent repair pathway that contributes to the maintenance of genome integrity in response to replication-associated DSBs.
    PLoS ONE 02/2014; 9(2):e89997. DOI:10.1371/journal.pone.0089997 · 3.23 Impact Factor
Show more