Article

Comparison of the physicochemical properties of MCT-containing fat emulsions in total nutrient admixtures

MedBioFit Research&Organization Lpc, Gödöllo, Hungary.
Colloids and surfaces B: Biointerfaces (Impact Factor: 4.29). 05/2009; 72(1):75-9. DOI: 10.1016/j.colsurfb.2009.03.016
Source: PubMed

ABSTRACT The physical stability of two types of MCT-emulsions made by different technologies - physical mixture vs. structured lipids - was studied as a function of storage time and temperature. Particle size analysis, zeta potential and dynamic surface tension measurements were carried out to evaluate the possible changes in the kinetic stability of the emulsions. Our results indicate that the physical mixture technology of MCT-emulsions resulted in impaired physicochemical stability compared to the ones containing structured triglycerides. In the case of structured lipids, both medium and long chain fatty acids can be found in one triglyceride molecule, leading to a favorable interfacial location of structured triglycerides. Besides the advantageous metabolic effects of structured triglycerides, their application is recommended to improve the physical stability of TPN admixtures.

0 Followers
 · 
170 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of the present study was to examine how the colloid stability features of o/w parenteral nutrition emulsions made with SMOFlipid (lipid emulsion based on soybean oil, medium chain triglycerides, olive oil and fish oil) will change in the presence of high concentration of calcium and glucose if usual micronutrients are also present, according to the needs of the clinical nutrition patient. Particle size analysis, zeta potential, dynamic surface tension measurements and light microscopic screening were carried out to evaluate the possible changes in the kinetic stability of the emulsions. Our results indicate that the higher glucose concentration of 15 or 20% could not compensate the emulsion-destabilizing effect of higher (5 mM) calcium concentration even in the presence of a modern fat emulsion. Therefore calcium demand of undernourished patient requiring 5 mM or higher final Ca²⁺ content in nutrient solution should be supplemented in another way.
    Journal of pharmaceutical and biomedical analysis 05/2011; 56(2):159-64. DOI:10.1016/j.jpba.2011.05.002 · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to screen the effect of eight formulations and process parameters on the physical attributes and stability of "Vitamin E"-rich parenteral lipid emulsions. Screening was performed using a 12-run, 8-factor, 2-level Plackett-Burman design. This design was employed to construct polynomial equations that identified the magnitude and direction of the linear effect of homogenization pressure, number of homogenization cycles, primary and secondary emulsifiers, pre-homogenization temperature, oil loading, and ratio of vitamin E to medium-chain triglycerides (MCT) in the oil phase on particle size, polydispersity index, short-term stability, and outlet temperature of manufactured emulsions. The viscosity of vitamin E was reduced from 3700 (100%) to 64 mPa.s (30%) by MCT addition. As viscosity is critical for efficient emulsification, vitamin/MCT ratio was the most significant contributor for the stability of emulsions. Particle size increased from 236 to 388 nm, and percentage vitamin remaining emulsified after 48 h dropped from 100 to 73% with increase in vitamin/MCT ratio from 30/70 to 70/30. Significant decrease in particle size and PI, and an increase in outlet temperature were also observed with increase in homogenization pressure and number of homogenization cycles. Emulsifiers and oil loading, however, had insignificant effect on the responses. Overall, stable submicron emulsions at vitamin/MCT ratio of 30/70 could be prepared at 25,000 psi and 25 cycles in ambient conditions. The identification of these parameters by a well-constructed design demonstrated the utility of screening studies in the "Quality by Design" approach to pharmaceutical product development.
    Drug Development and Industrial Pharmacy 05/2012; DOI:10.3109/03639045.2012.682223 · 2.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TPN infusions are usually administered during a treatment period of 10-24 hours per day due to the metabolic capacity of the liver. During this time interval physicochemically stable TPN solution (emulsion) is needed for the treatment. The purpose of the present study was to examine how the kinetic stability features of ready-made total parenteral nutrition admixtures containing olive oil and soybean oil will change under the usage-modeling 24-hour application with and without overdose Ca2+. Particle size analysis and zeta potential measurements were carried out to evaluate the possible changes in the kinetic stability of the emulsions. Our results indicate that in two of the four mixtures bimodal droplet-size distribution figures were detected and appearance of fat particles over 5 μm can not be disclosed. The tendency for separation of large diameter droplets in the two types of oil-based emulsion systems was different. In case of soybean containing emulsion second peak of droplets appeared in the bottom of the container in contrast to the olive oil containing emulsions where the second peak appeared in the surface layer. Interestingly this phenomenon is independent of calcium-content. From therapeutic point the emulsions of the bigger droplets containing upper layer are safer because the potentially dangerous big droplets could remain in the infusion bag after the administration.
    Nutrition Journal 05/2012; 11:32. DOI:10.1186/1475-2891-11-32 · 2.64 Impact Factor