Article

Copy Number Variants of GSTM1 and GSTT1 in Relation to Lung Cancer Risk in a Prospective Cohort Study

Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
Annals of epidemiology (Impact Factor: 2.15). 05/2009; 19(8):546-52. DOI: 10.1016/j.annepidem.2009.03.003
Source: PubMed

ABSTRACT Previous studies did not discriminate wild-type from hemizygous genotypes of GSTM1 and GSTT1. In this study, we investigated wild-type, hemizygous deletion, and homozygous deletion genotypes of GSTM1 and GSTT1 and lung cancer risk.
We conducted a nested case-control study of 143 primary incident lung cancer cases matched to 447 cancer-free controls. Genotyping was carried out using a real-time polymerase chain reaction (PCR)-based assay. Conditional logistic regression models were used to estimate odds ratios (OR) and 95% confidence intervals (CI).
Compared to GSTM1 wild-type carriers, the relative odds of lung cancer increased from 1.49 (95% CI=0.66-3.40) to 1.80 (95% CI=0.81-4.02) for the hemizygous and homozygous deletion genotypes, respectively (p-trend=0.13). The strongest associations were seen among those who smoked less than one pack per day and had greater than or equal to one deletion variant of GSTM1 (OR=3.25; 95% CI=0.93-11.34; p-trend=0.07) whereas the reverse was observed for smokers who smoked greater than or equal to one pack per day (OR=0.80; 95% CI=0.24-2.67; p-interaction=0.08). No clear associations were observed for GSTT1 genotypes.
Risk of lung cancer increased as the number of deletion variants increased for GSTM1, although the associations were nonsignificant. Discriminating between the wild-type, hemizygous, and homozygous deletion GSTM1 genotypes permitted a more precise characterization of the associations between GSTM1 deletion variants and lung cancer.

0 Followers
 · 
175 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nicotine dependence is associated with an increased risk of mood and anxiety disorders and suicide. The primary hypothesis of this study was to identify whether the polymorphisms of two glutathione-S-transferase enzymes (GSTM1 and GSTT1 genes) predict an increased risk of mood and anxiety disorders in smokers with nicotine dependence. Smokers were recruited at the Centre of Treatment for Smokers. The instruments were a sociodemographic questionnaire, Fagerström Test for Nicotine Dependence, diagnoses of mood disorder and nicotine dependence according to DSM-IV (SCID-IV), and the Alcohol, Smoking and Substance Involvement Screening Test. Anxiety disorder was assessed based on the treatment report. Laboratory assessment included glutathione-S-transferases M1 (GSTM1) and T1 (GSTT1), which were detected by a multiplex-PCR protocol. Compared with individuals who had both GSTM1 and GSTT1 genes, a higher frequency of at least one deletion of the GSTM1 and GSTT1 genes was identified in anxious smokers [odds ratio (OR)=2.21, 95% confidence interval (CI)=1.05-4.65, P=0.034], but there was no association with bipolar and unipolar depression (P=0.943). Compared with nonanxious smokers, anxious smokers had a greater risk for mood disorders (OR=4.67; 95% CI=2.24-9.92, P<0.001), lung disease (OR=6.78, 95% CI=1.95-23.58, P<0.003), and suicide attempts (OR=17.01, 95% CI=2.23-129.91, P<0.006). This study suggests that at least one deletion of the GSTM1 and GSTT1 genes represents a risk factor for anxious smokers. These two genes may modify the capacity for the detoxification potential against oxidative stress.
    Psychiatric genetics 03/2014; 24(3). DOI:10.1097/YPG.0000000000000023 · 2.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background & objectives: Genetic polymorphisms in glutathione-S-transferase genes ( GSTM1 and GSTT1 ) have been studied intensively for their potential role in lung cancer susceptibility. However, most of the studies on association between the polymorphisms and lung cancer do not distinguish between genotypes with one or two copies of the genes. The present study investigates the gene dosage effects of GSTT1 and GSTM1 copy number and their environmental interactions to examine the association of lung cancer risk with trimodular genotypes of the GSTs in a high-risk population from north-east India. Methods: A total of 154 lung cancer cases and 154 age and sex matched controls from the high risk region of north-east India were analyzed by multiplex real-time PCR to determine the trimodal genotypes (+/+, +/- and -/-) in both the genes ( GSTM1 and GSTT1 ). Results: No significant association and gene dosage effect of GSTM1 gene copy number with lung cancer risk ( P trend =0.13) were found. However, absence of GSTT1 conferred 68 per cent (OR=0.32;95%CI=0.15-0.71;P=0.005) reduced risk compared to the two copy number of the gene. t0 here was evidence of gene dosage effect of GSTT1 gene ( P trend =0.006). Tobacco smoking was a major environmental risk factor to lung cancer (OR=3.03;95%CI=1.73-5.31;P<0.001). However, its interaction with null genotype of GSTT1 conferred significant reduced risk to lung cancer (OR=0.30;95%CI=0.10-0.91;P=0.03). Further in only tobacco smokers, null genotype was associated with increased reduced risk [0.03(0.001-0.78)0.03; P trend =0.006]. No effect modification of GSTM1 was observed with lung cancer risk by environmental risk factors. Interpretation & conclusions: The results suggest that absence of GSTT1 null genotype may be associated with a reduced risk of lung cancer and the effect remains unchanged after interaction with smoking.
    The Indian Journal of Medical Research 05/2014; 139(5):720-9. · 1.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aromatase inhibitors (AIs) are a vital component of estrogen receptor positive (ER+) breast cancer treatment. De novo and acquired resistance, however, is common. The aims of this study were to relate patterns of copy number aberrations to molecular and proliferative response to AIs, to study differences in the patterns of copy number aberrations between breast cancer samples pre- and post-AI neoadjuvant therapy, and to identify putative biomarkers for resistance to neoadjuvant AI therapy using an integrative analysis approach. Samples from 84 patients derived from two neoadjuvant AI therapy trials were subjected to copy number profiling by microarray-based comparative genomic hybridisation (aCGH, n = 84), gene expression profiling (n = 47), matched pre- and post-AI aCGH (n = 19 pairs) and Ki67-based AI-response analysis (n = 39). Integrative analysis of these datasets identified a set of nine genes that, when amplified, were associated with a poor response to AIs, and were significantly overexpressed when amplified, including CHKA, LRP5 and SAPS3. Functional validation in vitro, using cell lines with and without amplification of these genes (SUM44, MDA-MB134-VI, T47D and MCF7) and a model of acquired AI-resistance (MCF7-LTED) identified CHKA as a gene that when amplified modulates estrogen receptor (ER)-driven proliferation, ER/estrogen response element (ERE) transactivation, expression of ER-regulated genes and phosphorylation of V-AKT murine thymoma viral oncogene homolog 1 (AKT1). These data provide a rationale for investigation of the role of CHKA in further models of de novo and acquired resistance to AIs, and provide proof of concept that integrative genomic analyses can identify biologically relevant modulators of AI response.
    Breast cancer research: BCR 12/2015; 17(1):532. DOI:10.1186/s13058-015-0532-0 · 5.88 Impact Factor

Full-text (2 Sources)

Download
51 Downloads
Available from
May 29, 2014