Molecular phylogenetics and generic assessment in the tribe Morindeae (Rubiaceae-Rubioideae): how to circumscribe Morinda L. to be monophyletic?

Bergius Foundation, Royal Swedish Academy of Sciences and Botany Department, Stockholm University, SE-10691 Stockholm, Sweden.
Molecular Phylogenetics and Evolution (Impact Factor: 4.02). 05/2009; 52(3):879-86. DOI: 10.1016/j.ympev.2009.04.007
Source: PubMed

ABSTRACT Most of the species of the family Rubiaceae with flowers arranged in head inflorescences are currently classified in three distantly related tribes, Naucleeae (subfamily Cinchonoideae) and Morindeae and Schradereae (subfamily Rubioideae). Within Morindeae the type genus Morinda is traditionally and currently circumscribed based on its head inflorescences and syncarpous fruits (syncarps). These characters are also present in some members of its allied genera, raising doubts about the monophyly of Morinda. We perform Bayesian phylogenetic analyses using combined nrETS/nrITS/trnT-F data for 67 Morindeae taxa and five outgroups from the closely related tribes Mitchelleae and Gaertnereae to rigorously test the monophyly of Morinda as currently delimited and assess the phylogenetic value of head inflorescences and syncarps in Morinda and Morindeae and to evaluate generic relationships and limits in Morindeae. Our analyses demonstrate that head inflorescences and syncarps in Morinda and Morindeae are evolutionarily labile. Morinda is highly paraphyletic, unless the genera Coelospermum, Gynochthodes, Pogonolobus, and Sarcopygme are also included. Morindeae comprises four well-supported and morphologically distinct major lineages: Appunia clade, Morinda clade (including Sarcopygme and the lectotype M. royoc), Coelospermum clade (containing Pogonolobus and Morinda reticulata), and Gynochthodes-Morinda clade. Four possible alternatives for revising generic boundaries are presented to establish monophyletic units. We favor the recognition of the four major lineages of Morindeae as separate genera, because this classification reflects the occurrence of a considerable morphological diversity in the tribe and the phylogenetic and taxonomic distinctness of its newly delimited genera.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The evolution of dioecy from heterostyly has been well documented, but detailed studies on this transitional process are rare. Here we report the occurrence of cryptic dioecy in a perennial liana species with stigma-height dimorphism, Morinda parvifolia Bartl. ex DC. (Rubiaceae). Floral morphology, ancillary characters and cross compatibility of long-styled (L-morph) and short-styled (S-morph) were examined. L-morph and S-morph display obvious pistil dimorphisms, with the stigma of S-morph lacking papillae cells. Both floral morphs show similar pollen morphology, although pollen viability is higher in S-morph than in L-morph. S-morph flowers produce viable pollen grains but much reduced stigma and set no fruits, functioning as males; L-morphs, although with viable pollen grains and receptive stigmas, exhibit strong self- and intramorph incompatibility, with self- and intramorph pollen tubes arrested in the stigma lobes and the upper part of style, respectively, resulting in L-morphs functioning only as females. The species thus has physiological androdioecy but functional dioecy. This might be the first case showing the possibility that androdioecy could be a mid-stage in the pathway of dioecy evolving from stigma-height dimorphism.
    Plant Systematics and Evolution 04/2012; 298(4). · 1.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Rubiaceae is the fourth Angiosperm family in number of species in the World and in the Neotropics. Its overwhelming diversity and presence in most biomes, and at most vegetation layers, makes this family one of the most important components of tropical vegetation. During the last two decades, family classification went through several reorganizations, mostly influenced by the advent of molecular phylogenetic studies, and many taxonomic revisions and floristic studies on Brazilian Rubiaceae have become available. In view of the considerable amount of literature that has recently been produced on Neotropical Rubiaceae, the present work has two main objectives: the first is to offer an overall view of the most recent family classification with emphasis on the genera of Rubiaceae occurring in Brazil, and to indicate particular taxa that are still in need of phylogenetic and taxonomic studies; the second objective is to present a short discussion on the state of floristic and taxonomic knowledge with respect to the various regions of Brazil, indicating the taxa and the geographic areas that need to be studied.
    Rodriguésia. 01/2012; 63:101-128.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Guihaiothamnus (Rubiaceae) is an enigmatic, monotypic genus endemic to southwestern China. Its generic status has never been doubted because it is morphologically unique by having rosette habit, showy, long-corolla-tubed flowers, and multi-seeded indehiscent berry-like fruits. The genus has been postulated to be a relict in the broad-leaved forests of China, and to be related to the genus Wendlandia, which was placed in the subfamily Cinchonoideae and recently classified in the tribe Augusteae of the subfamily Dialypetalanthoideae. Using combined evidence from palynology, cytology, and DNA sequences of nuclear ITS and four plastid markers (rps16, trnT-F, ndhF, rbcL), we assessed the phylogenetic position of Guihaiothamnus in Rubiaceae. Our molecular phylogenetic analyses placed the genus deeply nested within Wendlandia. This relationship is corroborated by evidence from palynology and cytology. Using a relaxed molecular clock method based on five fossil records, we dated the stem age of Wendlandia to be 17.46 my and, the split between G. acaulis and related Wendlandia species in southwestern China to be 2.11 mya. This young age, coupled with the derived position in Wendlandia, suggests an evolutionary derivation rather than an evolutionary relict of G. acaulis. Its rosette habit and large showy flowers, which are very distinctive from other Wendlandias, are interpreted as a result of recent rapid adaptation to rock and cliff habitats.
    Molecular Phylogenetics and Evolution 06/2014; · 4.02 Impact Factor

Full-text (2 Sources)

Available from
Jun 4, 2014