Article

Acetylation of PAMAM dendrimers for cellular delivery of siRNA

Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, USA.
BMC Biotechnology (Impact Factor: 2.59). 05/2009; 9(1):38. DOI: 10.1186/1472-6750-9-38
Source: PubMed

ABSTRACT The advancement of gene silencing via RNA interference is limited by the lack of effective short interfering RNA (siRNA) delivery vectors. Rational design of polymeric carriers has been complicated by the fact that most chemical modifications affect multiple aspects of the delivery process. In this work, the extent of primary amine acetylation of generation 5 poly(amidoamine) (PAMAM) dendrimers was studied as a modification for the delivery of siRNA to U87 malignant glioma cells.
PAMAM dendrimers were reacted with acetic anhydride to obtain controlled extents of primary amine acetylation. Acetylated dendrimers were complexed with siRNA, and physical properties of the complexes were studied. Dendrimers with up to 60% of primary amines acetylated formed approximately 200 nm complexes with siRNA. Increasing amine acetylation resulted in reduced polymer cytotoxicity to U87 cells, as well as enhanced dissociation of dendrimer/siRNA complexes. Acetylation of dendrimers reduced the cellular delivery of siRNA which correlated with a reduction in the buffering capacity of dendrimers upon amine acetylation. Confocal microscopy confirmed that escape from endosomes is a major barrier to siRNA delivery in this system.
Primary amine acetylation of PAMAM dendrimers reduced their cytotoxicity to U87 cells, and promoted the release of siRNA from dendrimer/siRNA complexes. A modest fraction (approximately 20%) of primary amines of PAMAM can be modified while maintaining the siRNA delivery efficiency of unmodified PAMAM, but higher degrees of amine neutralization reduced the gene silencing efficiency of PAMAM/siRNA delivery vectors.

Download full-text

Full-text

Available from: Kathryn E Uhrich, Jan 03, 2014
0 Followers
 · 
175 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent advancements in polymeric gene delivery have raised the potential of gene therapy as treatment for various acquired and inherited diseases. Here, we report on the synthesis and characterization of N-ethyl-N'-(3-dimethylaminopropyl)-guanidinyl-polyethylenimine (sGP) polymers and investigation of their capability to carry DNA and siRNA in vitro. Zinc triflate-mediated activation of primary amines of branched polyethylenimine (bPEI) followed by reaction with varying amounts of N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDAC) resulted in the generation of a small series of trisubstituted guanidinyl-modified polyethylenimine polymers. Determination of primary amines on modified polymers by TNBS assay revealed 62-84% of the attempted conjugation of EDAC onto bPEI. These modified polymers were shown to condense plasmid DNA and retard its mobility on 0.8% agarose gel. Further, these polymers were evaluated for their capability to carry pDNA into the cells by performing transfection assay on various mammalian cells. All the modified polymer/pDNA complexes exhibited significantly higher levels of gene expression with one of the complexes, sGP3/pDNA complex, displayed ~1.45 to 3.0 orders of magnitude higher transfection efficiency than that observed in the native bPEI and the commercial transfection reagent, Lipofectamine™. The efficacy of sGP3 polymer was further assessed by siRNA delivery, which resulted in ~81% suppression of the target gene. In conclusion, these studies demonstrate the potential of these substituted guanidinyl-modified PEIs as efficient gene delivery vectors.
    Colloids and surfaces B: Biointerfaces 04/2013; 109C:197-203. DOI:10.1016/j.colsurfb.2013.03.052 · 4.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper reviews different techniques for analyzing the transfection efficiencies and cytotoxicities of dendriplexes-complexes of nucleic acids with dendrimers. Analysis shows that three plasmids are mainly used in transfection experiments: plasmid DNA encoding luciferase from the firefly Photinus pyralis, beta-galactosidase, or green fluorescent protein. The effective charge ratio of transfection does not directly correlate with the charge ratio obtained from gel electrophoresis, zeta-potential or ethidium bromide intercalation data. The most popular cells for transfection studies are human embryonic kidney cells (HEK293), mouse embryonic cells (NIH/3T3), SV40 transformed monkey kidney fibroblasts (COS-7) and human epithelioid cervical carcinoma cells (HeLa). Cellular uptake is estimated using fluorescently-labeled dendrimers or nucleic acids. Transfection efficiency is measured by the luciferase reporter assay for luciferase, X-Gal staining or beta-galactosidase assay for beta-galactosidase, and confocal microscopy for green fluorescent protein. Cytotoxicity is determined by the MTT test and lactate dehydrogenase assays. On the basis of the papers reviewed, a standard essential set of techniques for characterizing dendriplexes was constructed: (1) analysis of size and shape of dendriplexes in dried/frozen state by electron or atomic force microscopy; (2) analysis of charge/molar ratio of complexes by gel electrophoresis or ethidium bromide intercalation assay or zeta-potential measurement; (3) analysis of hydrodynamic diameter of dendriplexes in solution by dynamic light scattering. For the evaluation of transfection efficiency the essential techniques are (4) luciferase reporter assay, beta-galactosidase assay or green fluorescent protein microscopy, and (5) cytotoxicity by the MTT test. All these tests allow the transfection efficiencies and cytotoxicities of different kinds of dendrimers to be compared.
    Journal of Controlled Release 10/2009; 141(2):110-27. DOI:10.1016/j.jconrel.2009.09.030 · 7.26 Impact Factor
  • Source