The nucleus tractus solitarius: a portal for visceral afferent signal processing, energy status assessment and integration of their combined effects on food intake.

Psychology and Neuroscience, University of Pennsylvania, Philadelphia, PA, USA.
International journal of obesity (2005) (Impact Factor: 5.39). 05/2009; 33 Suppl 1:S11-5. DOI: 10.1038/ijo.2009.10
Source: PubMed

ABSTRACT For humans and animal models alike there is general agreement that the central nervous system processing of gastrointestinal (GI) signals arising from ingested food provides the principal determinant of the size of meals and their frequency. Despite this, relatively few studies are aimed at delineating the brain circuits, neurochemical pathways and intracellular signals that mediate GI-stimulation-induced intake inhibition. Two additional motivations to pursue these circuits and signals have recently arisen. First, the success of gastric-bypass surgery in obesity treatment is highlighting roles for GI signals such as glucagon-like peptide-1 (GLP-1) in intake and energy balance control. Second, accumulating data suggest that the intake-reducing effects of leptin may be mediated through an amplification of the intake-inhibitory effects of GI signals. Experiments reviewed show that: (1) the intake-suppressive effects of a peripherally administered GLP-1 receptor agonist is mediated by caudal brainstem neurons and that forebrain-hypothalamic neural processing is not necessary for this effect; (2) a population of medial nucleus tractus solitarius (NTS) neurons that are responsive to gastric distention is also driven by leptin; (3) caudal brainstem-targeted leptin amplifies the food-intake-inhibitory effects of gastric distention and intestinal nutrient stimulation; (4) adenosine monophosphate-activated protein kinase (AMPK) activity in NTS-enriched brain lysates is elevated by food deprivation and reduced by refeeding and (5) the intake-suppressive effect of hindbrain-directed leptin is reversed by elevating hindbrain AMPK activity. Overall, data support the view that the NTS and circuits within the hindbrain mediate the intake inhibition of GI signals, and that the effects of leptin on food intake result from the amplification of GI signal processing.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Millions of Mexico, US and across the world children are overweight and obese. Exposure to fossil-fuel combustion sources increases the risk for obesity and diabetes, while long-term exposure to fine particulate matter (PM2.5) and ozone (O3) above US EPA standards is associated with increased risk of Alzheimer's disease (AD). Mexico City Metropolitan Area children are chronically exposed to PM2.5 and O3 concentrations above the standards and exhibit systemic, brain and intrathecal inflammation, cognitive deficits, and Alzheimer disease neuropathology. We investigated adipokines, food reward hormones, endothelial dysfunction, vitamin D and apolipoprotein E (APOE) relationships in 80 healthy, normal weight 11.1±3.2 year olds matched by age, gender, BMI and SES, low (n: 26) versus high (n:54) PM2.5 exposures. Mexico City children had higher leptin and endothelin-1 (p<0.01 and p<0.000), and decreases in glucagon-like peptide-1 (GLP 1), ghrelin, and glucagon (<0.02) versus controls. BMI and leptin relationships were significantly different in low versus high PM2.5 exposed children. Mexico City APOE 4 versus 3 children had higher glucose (p=0.009). Serum 25-hydroxyvitamin D<30ng/mL was documented in 87% of Mexico City children. Leptin is strongly positively associated to PM 2.5 cumulative exposures. Residing in a high PM2.5 and O3 environment is associated with 12h fasting hyperleptinemia, altered appetite-regulating peptides, vitamin D deficiency, and increases in ET-1 in clinically healthy children. These changes could signal the future trajectory of urban children towards the development of insulin resistance, obesity, type II diabetes, premature cardiovascular disease, addiction-like behavior, cognitive impairment and Alzheimer's disease. Increased efforts should be made to decrease pediatric PM2.5 exposures, to deliver health interventions prior to the development of obesity and to identify and mitigate environmental factors influencing obesity and Alzheimer disease. Copyright © 2015 Elsevier Inc. All rights reserved.
    Environmental Research 05/2015; 140:579-592. DOI:10.1016/j.envres.2015.05.012 · 3.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background:The physiological control of feeding behavior involves modulation of the intake inhibitory effects of gastrointestinal satiation signaling via endogenous hindbrain leptin receptor (LepR) and glucagon-like-peptide-1 receptor (GLP-1R) activation.Design and Results:Using a variety of dose-combinations of hindbrain delivered (4th intracerebroventricular; i.c.v.) leptin and the GLP-1R agonist exendin-4, experiments demonstrate that hindbrain LepR and GLP-1R signaling interact to control food intake and body weight in an additive manner. In addition, the maximum intake suppressive response that could be achieved by 4th i.c.v. leptin alone in non-obese rats (∼33%) was shown to be further suppressed when exendin-4 was co-administered. Importantly, it was determined that the interaction between hindbrain LepR signaling and GLP-1R signaling is relevant to endogenous food intake control, as hindbrain GLP-1R blockade by the selective antagonist exendin-(9-39) attenuated the intake inhibitory effects of hindbrain leptin delivery.Conclusions:Collectively, the findings reported here show that hindbrain LepR and GLP-1R activation interact in at least an additive manner to control food intake and body weight. As evidence is accumulating that combination pharmacotherapies offer greater sustained food intake and body weight suppression in obese individuals when compared with mono-drug therapies or lifestyle modifications alone, these findings highlight the need for further examination of combined central nervous system GLP-1R and LepR signaling as a potential drug target for obesity treatment.International Journal of Obesity advance online publication, 17 January 2012; doi:10.1038/ijo.2011.265.
    International journal of obesity (2005) 01/2012; 36(12). DOI:10.1038/ijo.2011.265 · 5.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Food availability in nature is often irregular, and famine is commonplace. Increased motivation to engage in ingestive behaviors increases the chance of survival, providing additional potential opportunities for reproduction. Because of the advantages conferred by entraining ingestive behavior to environmental conditions, neuroendocrine mechanisms regulating the motivation to acquire and ingest food have evolved to be responsive to exogenous (i.e., food stored for future consumption) and endogenous (i.e., body fat stores) fuel availability. Motivated behaviors like eating occur in two phases. The appetitive phase brings animals into contact with food (e.g., foraging, food hoarding), and the more reflexive consummatory phase results in ingestion (e.g., chewing, swallowing). Quantifiable appetitive behaviors are part of the natural ingestive behavioral repertoire of species such as hamsters and humans. This review summarizes current knowledge about neuroendocrine regulators of ingestive behavior, with an emphasis appetitive behavior. We will discuss hormonal regulators of appetitive ingestive behaviors, including the orexigenic hormone ghrelin, which potently stimulates foraging and food hoarding in Siberian hamsters. This section includes a discussion of the hormone leptin, its relation to endogenous fat stores, and its role in food deprivation-induced increases in appetitive ingestive behaviors. Next, we discuss how hormonal regulators interact with neurotransmitters involved in the regulation of ingestive behaviors, such as neuropeptide Y (NPY), agouti-related protein (AgRP) and α-melanocyte stimulating hormone (α-MSH), to regulate ingestive behavior. Finally, we discuss the potential impact that perinatal nutrient availability can have on the neuroendocrine regulation of ingestive behavior. Understanding the hormonal mechanisms that connect metabolic fuel availability to central appetite regulatory circuits should provide a better understanding of the neuroendocrine regulation of the motivation to engage in ingestive behavior.
    Frontiers in Neuroscience 11/2013; 7:213. DOI:10.3389/fnins.2013.00213


Available from