The chemistry of the CuB site in cytochrome c oxidase and the importance of its unique His-Tyr bond.

Helsinki Bioenergetics Group, Programme of Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 05/2009; 1787(4):221-33. DOI: 10.1016/j.bbabio.2009.01.002
Source: PubMed

ABSTRACT The CuB metal center is at the core of the active site of the heme-copper oxidases, comprising a copper atom ligating three histidine residues one of which is covalently bonded to a tyrosine residue. Using quantum chemical methodology, we have studied the CuB site in several redox and ligand states proposed to be intermediates of the catalytic cycle. The importance of the His-Tyr crosslink was investigated by comparing energetics, charge, and spin distributions between systems with and without the crosslink. The His-Tyr bond was shown to decrease the proton affinity and increase the electron affinity of both Tyr-244 and the copper. A previously unnoticed internal electronic equilibrium between the copper atom and the tyrosine was observed, which seems to be coupled to the unique structure of the system. In certain states the copper and Tyr-244 compete for the unpaired electron, the localization of which is determined by the oxygenous ligand of the copper. This electronic equilibrium was found to be sensitive to the presence of a positive charge 10 A away from the center, simulating the effect of Lys-319 in the K-pathway of proton transfer. The combined results provide an explanation for why the heme-copper oxidases need two pathways of proton uptake, and why the K-pathway is active only in the second half of the reaction cycle.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The α proteobacter Rhodobacter sphaeroides accumulates two cytochrome c oxidases (CcO) in its cytoplasmic membrane during aerobic growth: a mitochondrial-like aa(3)-type CcO containing a di-copper Cu(A) center and mono-copper Cu(B), plus a cbb(3)-type CcO that contains Cu(B) but lacks Cu(A). Three copper chaperones are located in the periplasm of R. sphaeroides, PCu(A)C, PrrC (Sco) and Cox11. Cox11 is required to assemble Cu(B) of the aa(3)-type but not the cbb(3)-type CcO. PrrC is homologous to mitochondrial Sco1; Sco proteins are implicated in Cu(A) assembly in mitochondria and bacteria, and with Cu(B) assembly of the cbb(3)-type CcO. PCu(A)C is present in many bacteria, but not mitochondria. PCu(A)C of Thermus thermophilus metallates a Cu(A) center in vitro, but its in vivo function has not been explored. Here, the extent of copper center assembly in the aa(3)- and cbb(3)-type CcOs of R. sphaeroides has been examined in strains lacking PCu(A)C, PrrC, or both. The absence of either chaperone strongly lowers the accumulation of both CcOs in the cells grown in low concentrations of Cu(2+). The absence of PrrC has a greater effect than the absence of PCu(A)C and PCu(A)C appears to function upstream of PrrC. Analysis of purified aa(3)-type CcO shows that PrrC has a greater effect on the assembly of its Cu(A) than does PCu(A)C, and both chaperones have a lesser but significant effect on the assembly of its Cu(B) even though Cox11 is present. Scenarios for the cellular roles of PCu(A)C and PrrC are considered. The results are most consistent with a role for PrrC in the capture and delivery of copper to Cu(A) of the aa(3)-type CcO and to Cu(B) of the cbb(3)-type CcO, while the predominant role of PCu(A)C may be to capture and deliver copper to PrrC and Cox11. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
    Biochimica et Biophysica Acta 01/2012; 1817(6):955-64. · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The reaction of oxidized bovine cytochrome c oxidase (bCcO) with hydrogen peroxide (H(2)O(2)) was studied by electron paramagnetic resonance (EPR) to determine the properties of radical intermediates. Two distinct radicals with widths of 12 and 46 G are directly observed by X-band EPR in the reaction of bCcO with H(2)O(2) at pH 6 and pH 8. High-frequency EPR (D-band) provides assignments to tyrosine for both radicals based on well-resolved g-tensors. The wide radical (46 G) exhibits g-values similar to a radical generated on L-Tyr by UV-irradiation and to tyrosyl radicals identified in many other enzyme systems. In contrast, the g-values of the narrow radical (12 G) deviate from L-Tyr in a trend akin to the radicals on tyrosines with substitutions at the ortho position. X-band EPR demonstrates that the two tyrosyl radicals differ in the orientation of their β-methylene protons. The 12 G wide radical has minimal hyperfine structure and can be fit using parameters unique to the post-translationally modified Y244 in bCcO. The 46 G wide radical has extensive hyperfine structure and can be fit with parameters consistent with Y129. The results are supported by mixed quantum mechanics and molecular mechanics calculations. In addition to providing spectroscopic evidence of a radical formed on the post-translationally modified tyrosine in CcO, this study resolves the much debated controversy of whether the wide radical seen at low pH in the bovine enzyme is a tyrosine or tryptophan. The possible role of radical formation and migration in proton translocation is discussed.
    Journal of the American Chemical Society 03/2012; 134(10):4753-61. · 10.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transition metal ion complexation with proteins is ubiquitous across such diverse fields as neurodegenerative and cardiovascular diseases and cancer. In this study, the structures of divalent copper ion centers including three histidine and one oxygen-ligated amino acid residues and the relative binding affinities of the oxygen-ligated amino acid residues with these metal ion centers, which are debated in the literature, are presented. Furthermore, new force field parameters, which are currently lacking for the full-length metal-ligand moieties, are developed for metalloproteins that have these centers. These new force field parameters enable investigations of metalloproteins possessing these binding sites using molecular simulations. In addition, the impact of using the atom equivalence and inequivalence atomic partial charge calculation procedures on the simulated structures of these metallopeptides, including hydration properties, is described. © 2014 Wiley Periodicals, Inc.
    Journal of Computational Chemistry 04/2014; · 3.84 Impact Factor

Full-text (2 Sources)

Available from
May 19, 2014