Lipid profiles in middle-aged men and women after famine exposure during gestation: The Dutch Hunger Winter Families Study

Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA.
American Journal of Clinical Nutrition (Impact Factor: 6.77). 05/2009; 89(6):1737-43. DOI: 10.3945/ajcn.2008.27038
Source: PubMed


Many studies in humans have related birth weight to lipid profiles in adulthood. Fewer have estimated associations directly attributable to maternal nutrition during pregnancy.
Our objective was to determine whether famine exposure during gestation is associated with a more atherogenic profile in adult offspring.
In 2003-2005, we studied 1) 359 singleton men and women born between January 1945 and March 1946 in clinics in Amsterdam, Rotterdam, and Leiden whose mothers were exposed to the famine during pregnancy; 2) 299 singletons born in the same 3 institutions during 1943 or 1947; and 3) 313 unexposed same-sex siblings of the above individuals. A lipid profile was obtained after an overnight fast.
Female offspring with prenatal famine exposure had a dyslipidemic pattern characterized by elevated total cholesterol (0.26 mmol/L; 95% CI: 0.07, 0.46; P = 0.007), triglycerides (0.17 mmol/L; 95% CI: 0.03, 0.31; P = 0.02), and LDL cholesterol (0.17 mmol/L; 95% CI: -0.01, 0.36; P = 0.06) compared with unexposed offspring. This pattern was not seen in men. The increases in total cholesterol and LDL cholesterol were independent of body mass index, waist circumference, and midthigh circumference. The increase in triglycerides was independent of midthigh circumference but was attenuated with control for either body mass index or waist circumference. There was no evidence for associations within specific gestational windows. No association was observed between prenatal famine exposure and HDL cholesterol in either sex.
In women, but not in men, aged approximately 58 y, we observed an association between prenatal undernutrition and elevated total cholesterol concentrations and triglycerides.

Download full-text


Available from: Aryeh Stein, Jan 14, 2014
  • Source
    • "offspring were found to have an increased risk of glucose intolerance in adulthood (Lumey et al., 2009). Differential DNA methylation was found in adult female offspring who had been exposed to famine in utero (Heijmans et al., 2008), but it is unknown whether the observed differences in methylation are present in their germline. "
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND Traditional studies focused on DNA as the heritable information carrier that passes the phenotype from parents to offspring. However, increasing evidence suggests that information, that is independent of the DNA sequence, termed epigenetic information, can be inherited between generations. Recently, in our lab, we found that prediabetes in fathers increases the susceptibility to diabetes in offspring through gametic cytosine methylation changes. Paternal prediabetes changed overall methylation patterns in sperm, and a large portion of differentially methylated loci can be transmitted to pancreatic islets of offspring up to the second generation. In this review, we survey the extensive examples of environmentally induced epigenetic inheritance in various species, ranging from Caenorhabditis elegans to humans. We focus mainly on elucidating the molecular basis of environmental epigenetic inheritance through gametes, which is an emerging theme and has important implications for explaining the prevalence of obesity, type 2 diabetes and other chronic non-genetic diseases, which is also important for understanding the influence of environmental exposures on reproductive and overall health in offspring.
    Human Reproduction Update 11/2014; 21(2). DOI:10.1093/humupd/dmu061 · 10.17 Impact Factor
  • Source
    • "Even after more than a decade of research, no genetic or epigenetic variations have been identified that could explain the inheritance of this phenotype. Similarly, results from the Dutch Hunger Winter Families cohort [70] showed that a hunger period during pregnancy can lead to poor health of female offspring in the F1 and F2 generations [71], [72]. This inheritance pattern has been associated with DNA methylation changes in the human IGF2 gene, and several other studies have provided evidence suggesting that altered DNA methylation patterns may link nutritional exposures in the parental or grandparental generation to human health and life span [73]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Genomic concepts are based on the assumption that phenotypes arise from the expression of genetic variants. However, the presence of non-Mendelian inheritance patterns provides a direct challenge to this view and suggests an important role for alternative mechanisms of gene regulation and inheritance. Over the past few years, a highly complex and diverse network of noncoding RNAs has been discovered. Research in animal models has shown that RNAs can be inherited and that RNA methyltransferases can be important for the transmission and expression of modified phenotypes in the next generation. We discuss possible mechanisms of RNA-mediated inheritance and the role of these mechanisms for human health and disease.
    PLoS Genetics 04/2014; 10(4):e1004296. DOI:10.1371/journal.pgen.1004296 · 7.53 Impact Factor
  • Source
    • "Lipid profiles of adults exposed prenatally to famine exhibited sex bias independent of gestational timing: adult women who experienced prenatal nutrient restriction showed elevated total and LDL cholesterol and triglyceride concentrations, risk factors for cardiovascular disease, compared to unexposed women; men did not show such an increase [106]. Furthermore, Tobi et al. [107] compared DNA methylation patterns in 15 genes associated with metabolic and cardiovascular disease in individuals prenatally exposed to famine. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Several autoimmune and neurological diseases exhibit a sex bias, but discerning the causes and mechanisms of these biases has been challenging. Sex differences begin to manifest themselves in early embryonic development, and gonadal differentiation further bifurcates the male and female phenotypes. Even at this early stage, however, there is evidence that males and females respond to environmental stimuli differently, and the divergent phenotypic responses may have consequences later in life. The effect of prenatal nutrient restriction illustrates this point, as adult women exposed to prenatal restrictions exhibited increased risk factors of cardiovascular disease, while men exposed to the same condition did not. Recent research has examined the roles of sex-specific genes, hormones, chromosomes, and the interactions among them in mediating sex-biased phenotypes. Such research has identified testosterone, for example, as a possible protective agent against autoimmune disorders and an XX chromosome complement as a susceptibility factor in murine models of lupus and multiple sclerosis. Sex-biased chromatin is an additional and likely important component. Research suggesting a role for X and Y chromosome heterochromatin in regulating epigenetic states of autosomes has highlighted unorthodox mechanisms of gene regulation. The crosstalk between the Y chromosomes and autosomes may be further mediated by the mitochondria. The organelles have solely maternal transmission and exert differential effects on males and females. Altogether, research supports the notion that the interaction between sex-biased elements might exert novel regulatory functions in the genome and contribute to sex-specific susceptibilities to autoimmune and neurological diseases.
    Biology of Sex Differences 01/2014; 5(1):2. DOI:10.1186/2042-6410-5-2 · 4.84 Impact Factor
Show more