Article

Discovery, synthesis, and biological evaluation of piperidinol analogs with anti-tuberculosis activity.

Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
Bioorganic & medicinal chemistry (Impact Factor: 2.82). 05/2009; 17(10):3588-94. DOI:10.1016/j.bmc.2009.04.005
Source: PubMed

ABSTRACT Direct anti-tuberculosis screening of commercially available compound libraries identified a novel piperidinol with interesting anti-tuberculosis activity and drug like characteristics. To generate a structure activity relationship about this hit a 22 member optimization library was generated using parallel synthesis. Products of this library 1-((R)-3-(4-chlorophenoxy)-2-hydroxypropyl)-4-(4-chloro-3-(trifluoromethyl) phenyl)piperidin-4-ol and 1-((S)-3-(4-(trifluoromethyl) phenoxy)-2-hydroxypropyl)-4-(4-chloro-3-(trifluoromethyl) phenyl) piperidin-4-ol demonstrated good anti-tuberculosis activity. Unfortunately, side effects were observed upon in vivo anti-tuberculosis testing of these compounds precluding their further advancement, which may be in part due to the secondary pharmacology associated with the aryl piperidinol core.

0 0
 · 
1 Bookmark
 · 
107 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The treatment of tuberculosis is becoming more difficult due to the ever increasing prevalence of drug resistance. Thus, it is imperative that novel anti-tuberculosis agents, with unique mechanisms of action, be discovered and developed. The direct anti-tubercular testing of a small compound library led to discovery of adamantyl urea hit compound 1. In this study, the hit was followed up through the synthesis of an optimization library. This library was generated by systematically replacing each section of the molecule with a similar moiety until a clear structure-activity relationship was obtained with respect to anti-tubercular activity. The best compounds in this series contained a 1-adamantyl-3-phenyl urea core and had potent activity against Mycobacterium tuberculosis plus an acceptable therapeutic index. It was noted that the compounds identified and the pharmacophore developed is consistent with inhibitors of epoxide hydrolase family of enzymes. Consequently, the compounds were tested for inhibition of representative epoxide hydrolases: M. tuberculosis EphB and EphE; and human soluble epoxide hydrolase. Many of the optimized inhibitors showed both potent EphB and EphE inhibition suggesting the antitubercular activity is through inhibition of multiple epoxide hydrolase enzymes. The inhibitors also showed potent inhibition of humans soluble epoxide hydrolase, but limited cytotoxicity suggesting that future studies must be towards increasing the selectivity of epoxide hydrolase inhibition towards the M. tuberculosis enzymes.
    Bioorganic & medicinal chemistry 07/2011; 19(18):5585-95. · 2.82 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The intracellularly surviving and slow-growing pathogen, Mycobacterium tuberculosis, adapts the host cell environment for its active and dormant life cycle. It is evident that the lack of appropriate high-throughput screening of inhibitors within host cells is an impediment for the early stages of anti-tubercular drug discovery. We aimed to develop an integrated surrogate model that enhances the screening of large inhibitor libraries. Different mycobacterial species were compared for their growth, drug susceptibility and intracellular uptake. A 6-well plate solid agar-based spot culture growth inhibition (SPOTi) assay was developed into a higher throughput format. The uptake and intracellular survival of Mycobacterium aurum within mouse macrophage cells (RAW 264.7) were optimized using 24/96-well plate formats. Fast-growing, non-pathogenic M. aurum was found to have an antibiotic-susceptibility profile similar to that of M. tuberculosis. The sensitivity to an acidic pH environment and the ability to multiply inside RAW 264.7 macrophages provided additional advantages for employing M. aurum in intracellular drug screening methods. A selection of anti-tubercular drugs inhibited the growth and viability of M. aurum inside the macrophages at different levels. We present a rapid, convenient, high-throughput surrogate model, which provides a comprehensive evaluation platform for new chemical scaffolds against different physiological stages of mycobacteria within the primary cell environment of the host. The results using anti-tubercular drugs validate this model for screening libraries of existing and novel chemical entities.
    Journal of Antimicrobial Chemotherapy 03/2012; 67(6):1380-91. · 5.34 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The complex and highly impermeable cell wall of Mycobacterium tuberculosis (Mtb) is largely responsible for the ability of the mycobacterium to resist the action of chemical therapeutics. An L-rhamnosyl residue, which occupies an important anchoring position in the Mtb cell wall, is an attractive target for novel anti-tuberculosis drugs. In this work, we report a virtual screening (VS) study targeting Mtb dTDP-deoxy-L-lyxo-4-hexulose reductase (RmlD), the last enzyme in the L-rhamnosyl synthesis pathway. Through two rounds of VS, we have identified four RmlD inhibitors with half inhibitory concentrations of 0.9-25 μM, and whole-cell minimum inhibitory concentrations of 20-200 μg/ml. Compared with our previous high throughput screening targeting another enzyme involved in L-rhamnosyl synthesis, virtual screening produced higher hit rates, supporting the use of computational methods in future anti-tuberculosis drug discovery efforts.
    Bioorganic & medicinal chemistry letters 12/2011; 21(23):7064-7. · 2.65 Impact Factor

Full-text (2 Sources)

View
14 Downloads
Available from
Nov 20, 2013