Preparation of functional aptamer films using layer-by-layer self-assembly.

Department of Chemistry, Carleton University, Ottawa-Carleton Chemistry Institute, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6.
Biomacromolecules (Impact Factor: 5.37). 05/2009; 10(5):1149-54. DOI: 10.1021/bm8014126
Source: PubMed

ABSTRACT Advances in many aptamer-based applications will require a better understanding of how an aptamer's molecular recognition ability is affected by its incorporation into a suitable matrix. In this study, we investigated whether a model aptamer system, the sulforhodamine B aptamer, would retain its binding ability while embedded in a multilayer polyelectrolyte film. Thin films consisting of poly(diallyldimethylammonium chloride) as the polycation and both poly(sodium 4-styrene-sulfonate) and the aptamer as the polyanions were deposited by the layer-by-layer approach and were compared to films prepared using calf thymus DNA or a random single-stranded oligonucleotide. Data from UV-vis spectroscopy, quartz crystal microbalance studies, confocal microscopy, and time of flight secondary ion mass spectrometry confirm that the aptamer's recognition of its target is retained, with no loss of specificity and only a modest reduction of binding affinity, while it is incorporated within the thin film. These findings open up a raft of new opportunities for the development and application of aptamer-based functional thin films.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aptamers are single-stranded oligonucleotides that bind to targets with high affinity and selectivity. Their use as molecular recognition elements has emerged as a viable approach for biosensing, diagnostics, and therapeutics. Despite this potential, relatively few aptamers exist that bind to small molecules. Small molecules are important targets for investigation due to their diverse biological functions as well as their clinical and commercial uses. Novel, effective molecular recognition probes for these compounds are therefore of great interest. This paper will highlight the technical challenges of aptamer development for small molecule targets, as well as the opportunities that exist for their application in biosensing and chemical biology.
    Journal of nucleic acids 01/2012; 2012:748913.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: "Smart" materials are an emerging category of multifunctional materials with physical or chemical properties that can be controllably altered in response to an external stimulus. By combining the standard properties of the advanced material with the unique ability to recognize and adapt in response to a change in their environment, these materials are finding applications in areas such as sensing and drug delivery. While the majority of these materials are responsive to physical or chemical changes, a particularly exciting area of research seeks to develop smart materials that are sensitive to specific molecular or biomolecular stimuli. These systems require the integration of a molecular recognition probe specific to the target molecule of interest. The ease of synthesis and labeling, low cost, and stability of DNA aptamers make them uniquely suited to effectively serve as molecular recognition probes in novel smart material systems. This review will highlight current work in the area of aptamer-based smart materials and prospects for their future applications.
    Sensors 01/2014; 14(2):3156-3171. · 2.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel method for the preparation of covalently linked capillary coatings of poly(N-vinyl aminobutyric acid) (PVAA) obtained from hydrolyzed polyvinylpyrrolidone was demonstrated using photosensitive diazoresin (DR) as a coupling agent. A layer-by-layer self-assembled film of DR and PVAA based on ionic bonding was first fabricated on the inner wall of capillary, then the ionic bonding was converted into covalent bonding after treatment with UV light through a unique photochemical reaction of DR. The covalently bonded coatings suppressed protein adsorption on the inner surface of the capillary, and thus a baseline separation of lysozyme, cytochrome c, BSA, amyloglucosidase, and myoglobin was achieved using CE. Compared with bare capillary or non-covalently bonded DR/PVAA coatings, the covalently linked DR/PVAA capillary coatings not only improved the CE separation performance for proteins, but also exhibited good stability and repeatability. Due to the replacement of the highly toxic and moisture-sensitive silane coupling agent by DR in the covalent coating preparation, this method may provide a green and easy way to make covalently coated capillaries for CE. This article is protected by copyright. All rights reserved.
    Journal of Separation Science 01/2014; · 2.59 Impact Factor

Full-text (2 Sources)

Available from
May 20, 2014