Human glucagon receptor antagonists with thiazole cores. A novel series with superior pharmacokinetic properties.

Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Maaloev, Denmark.
Journal of Medicinal Chemistry (Impact Factor: 5.48). 05/2009; 52(9):2989-3000. DOI: 10.1021/jm8016249
Source: PubMed

ABSTRACT The aim of the work presented here was to design and synthesize potent human glucagon receptor antagonists with improved pharmacokinetic (PK) properties for development of pharmaceuticals for the treatment of type 2 diabetes. We describe the preparation of compounds with cyclic cores (5-aminothiazoles), their binding affinities for the human glucagon and GIP receptors, as well as affinities for rat, mouse, pig, dog, and monkey glucagon receptors. Generally, the compounds had slightly less glucagon receptor affinity compared to compounds of the previous series, but this was compensated for by much improved PK profiles in both rats and dogs with high oral bioavailabilities and sustained high plasma exposures. The compounds generally showed species selectivity for glucagon receptor binding with poor affinities for the rat, mouse, rabbit, and pig receptors. However, dog and monkey glucagon receptor affinities seem to reflect the human situation. One compound of this series, 18, was tested intravenously in an anesthetized glucagon-challenged monkey model of hyperglucagonaemia and hyperglycaemia and was shown dose-dependently to decrease glycaemia. Further, high plasma exposures and a long plasma half-life (5.2 h) were obtained.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Acute in vitro and in vivo biological activities of four novel structural analogues of glucagon were tested. desHis(1)Pro(4)-glucagon, desHis(1)Pro(4)Glu(9)-glucagon, desHis(1)Pro(4)Glu(9)Lys(12)FA-glucagon and desHis(1)Pro(4)Glu(9)Lys(30)FA-glucagon were stable to DPP-4 degradation and dose-dependently inhibited glucagon-mediated cAMP production (p<0.05 to p<0.001). None stimulated insulin secretion in vitro above basal levels, but all inhibited glucagon-induced insulin secretion (p<0.01 to p<0.001). In normal mice all analogues antagonised acute glucagon-mediated elevations of blood glucose (p<0.05 to p<0.001) and blocked corresponding insulinotropic responses. In high-fat fed mice, glucagon-induced increases in plasma insulin (p<0.05 to p<0.001) and glucagon-induced hyperglycaemia were blocked (p<0.05 to p<0.01) by three analogues. In obese diabetic (ob/ob) mice only desHis(1)Pro(4)Glu(9)-glucagon effectively (p<0.05 to p<0.01) inhibited both glucagon-mediated glycaemic and insulinotropic responses. desHis(1)Pro(4)-glucagon and desHis(1)Pro(4)Glu(9)-glucagon were biologically ineffective when administered 8 h prior to glucagon, whereas desHis(1)Pro(4)Glu(9)Lys(12)FA-glucagon retained efficacy (p<0.01) for up to 24 h. Such peptide-derived glucagon receptor antagonists have potential for type 2 diabetes therapy.
    Molecular and Cellular Endocrinology 07/2013; · 4.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Type 2 diabetes mellitus (T2DM) is a worldwide public health challenge. Despite the availability of many antidiabetes agents and pharmacotherapies targeting cardiovascular risk factors, the morbidity, mortality and economic consequences of T2DM are still a great burden to patients, society, health care systems and the economy. The need for new therapies for glycaemic control is compounded by the fact that existing treatments have limitations either because of their side effects (particularly weight gain and hypoglycaemia) or contraindications that limit their use. Furthermore, none of the current therapies have a significant impact on disease progression. Incretin-based therapies offer a new therapeutic approach to the management of T2DM, and there are also several even newer therapies in development. There are two groups of incretin-based therapies currently available; dipeptidyl peptidase-4 (DPP-4) inhibitors and GLP-1 analogues/mimetics. The former are given orally while the latter subcutaneously. These drugs result in glucose-dependent insulin secretion and glucose-dependent glucagon suppression, with consequent low risk of hypoglycaemia when used as mono- or combination therapy (except when used with sulphonylureas). In addition, they are either weight neutral in the case of DPP-4 inhibitors or cause weight loss in the case of incretin mimetics/analogues. Furthermore, animal studies have shown that these agents prolong β cell survival which offers the theoretical possibility of slowing the progression to T2DM. In this article we will review the currently available antidiabetes agents with particular emphasis on incretin-based and future therapies. In addition, we will review and discuss the evidence relating to glycaemic control and cardiovascular disease.
    Pharmacology [?] Therapeutics 01/2010; · 7.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glucagon is the main secretory product of the pancreatic alpha-cells. The main function of this peptide hormone is to provide sustained glucose supply to the brain and other vital organs during fasting conditions. This is exerted by stimulation of hepatic glucose production via specific G protein-coupled receptors in the hepatocytes. Type 2 diabetic patients are characterized by elevated glucagon levels contributing decisively to hyperglycemia in these patients. Accumulating evidence demonstrates that targeting the pancreatic alpha-cell and its main secretory product glucagon is a possible treatment for type 2 diabetes. Several lines of preclinical evidence have paved the way for the development of drugs, which suppress glucagon secretion or antagonize the glucagon receptor. In this review, the physiological actions of glucagon and the role of glucagon in type 2 diabetic pathophysiology are outlined. Furthermore, potential advantages and limitations of antagonizing the glucagon receptor or suppressing glucagon secretion in the treatment of type 2 diabetes are discussed with a focus on already marketed drugs and drugs in clinical development. It is concluded that the development of novel glucagon receptor antagonists are confronted with several safety issues. At present, available pharmacological agents based on the glucose-dependent glucagonostatic effects of GLP-1 represent the most favorable way to apply constraints to the alpha-cell in type 2 diabetes.
    The Review of Diabetic Studies 01/2011; 8(3):369-81.