KIF5B-ALK, a Novel Fusion Oncokinase Identified by an Immunohistochemistry-based Diagnostic System for ALK-positive Lung Cancer

The Cancer Institute, Japanese Foundation for Cancer Research, Japan.
Clinical Cancer Research (Impact Factor: 8.72). 05/2009; 15(9):3143-9. DOI: 10.1158/1078-0432.CCR-08-3248
Source: PubMed


EML4-ALK is a transforming fusion tyrosine kinase, several isoforms of which have been identified in lung cancer. Immunohistochemical detection of EML4-ALK has proved difficult, however, likely as a result of low transcriptional activity conferred by the promoter-enhancer region of EML4. The sensitivity of EML4-ALK detection by immunohistochemistry should be increased adequately.
We developed an intercalated antibody-enhanced polymer (iAEP) method that incorporates an intercalating antibody between the primary antibody to ALK and the dextran polymer-based detection reagents.
Our iAEP method discriminated between tumors positive or negative for EML4-ALK in a test set of specimens. Four tumors were also found to be positive for ALK in an archive of lung adenocarcinoma (n = 130) and another 4 among fresh cases analyzed in a diagnostic laboratory. These 8 tumors were found to include 1 with EML4-ALK variant 1, 1 with variant 2, 3 with variant 3, and 2 with previously unidentified variants (designated variants 6 and 7). Inverse reverse transcription-PCR analysis revealed that the remaining tumor harbored a novel fusion in which intron 24 of KIF5B was ligated to intron 19 of ALK. Multiplex reverse transcription-PCR analysis of additional archival tumor specimens identified another case of lung adenocarcinoma positive for KIF5B-ALK.
The iAEP method should prove suitable for immunohistochemical screening of tumors positive for ALK or ALK fusion proteins among pathologic archives. Coupling of PCR-based detection to the iAEP method should further facilitate the rapid identification of novel ALK fusion genes such as KIF5B-ALK.

30 Reads
  • Source
    • ". The intercalated antibody-enhanced polymer method was used for the sensitive detection of ALK, as described previously (Takeuchi et al., 2009). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Fetal lung interstitial tumor (FLIT) is a recently reported type of congenital lung lesion comprising solid and cystic components. The pathological features include unique interstitial mesenchyme-based cell proliferation, and differ from other neoplasms represented by pleuropulmonary blastoma or congenital peribronchial myofibroblastic tumor. FLIT is extremely rare and its gene expression profile has not yet been reported. We provide the first report of a novel chromosomal rearrangement resulting in α-2-macroglobulin (A2M) and anaplastic lymphoma kinase (ALK) gene fusion in a patient with FLIT. The tumor cells contained a t(2;12)(p23;p13) and were mesenchymal in origin (e.g., inflammatory myofibroblastic tumors), suggesting the involvement of ALK in this case of FLIT. Break apart fluorescence in situ hybridization demonstrated chromosomal rearrangement at ALK 2p23. Using 5'-rapid amplification of cDNA ends, we further identified a novel transcript fusing exon 22 of A2M to exon 19 of ALK, which was confirmed by reverse-transcription polymerase chain reaction. The corresponding chimeric gene was subsequently confirmed by sequencing, including the genomic break point between intron 22 and 18 of A2M and ALK, respectively. Discovery of A2M as a novel ALK fusion partner, together with the involvement of ALK, provides new insights into the pathogenesis of FLIT, and suggests the potential for new therapeutic strategies based on ALK inhibitors. © 2014 Wiley Periodicals, Inc.
    Genes Chromosomes and Cancer 10/2014; 53(10). DOI:10.1002/gcc.22199 · 4.04 Impact Factor
  • Source
    • "The rearrangement results from a short inversion in chromosome 2p, whereby ALK signaling is activated by the creation of oncogenic fusions of the intron 10 of ALK gene within an upstream partner intron 13 of echinoderm microtubule associated protein-like 4 (EML4)6. More recently, less than 1% of ALK rearrangements cases have different partner genes including kinesin family member 5B (KIF5B), TFG, and KLC-111,18. ALK rearrangements occur in approximately 4% of lung adenocarcinoma patients, usually young, non-smokers with clinically advanced disease6,7,8. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The rapid development of targeted therapies has enormously changed the clinical management of lung cancer patients over the past decade; therefore, molecular testing, such as epidermal growth factor receptor (EGFR) gene mutations or anaplastic lymphoma kinase (ALK) gene rearrangements, is now routinely used to predict the therapeutic responses in lung cancer patients. Moreover, as technology and knowledge supporting molecular testing is rapidly evolving, the landscape of targetable genomic alterations in lung cancer is expanding as well. This article will summarize the current state of the most commonly altered and most clinically relevant genes in lung cancer along with a brief review of potential future developments in molecular testing of lung cancer.
    Tuberculosis and Respiratory Diseases 08/2014; 77(2):49-54. DOI:10.4046/trd.2014.77.2.49
  • Source
    • "However, a subgroup analysis from the phase I trial of crizotinib failed to demonstrate such correlation between variant fusion proteins and clinical response to therapy (6). In addition, fusions of ALK with other partners including TRK-fused gene TFG and KIF5B have also been described in lung cancer patients, but appear to be much less common than EML4-ALK (7). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The identification of oncogenic driver mutations in non-small cell lung cancer (NSCLC) has led to a paradigm shift and the development of specific molecular treatments. Tumors harboring a rearranged EML4-ALK fusion oncogene are highly sensitive to therapy with ALK-targeted inhibitors. Crizotinib is the first approved treatment for advanced lung tumors containing this genetic abnormality. In this mini review, we discuss the existing data on crizotinib as well as ongoing trials involving this medication. A brief overview of the known resistance mechanisms to crizotinib will also be presented followed by a summary of the ongoing trials involving next-generation ALK-inhibitors or other targeted therapies in patients with ALK+ NSCLC.
    Frontiers in Oncology 07/2014; 4:174. DOI:10.3389/fonc.2014.00174
Show more