Article

Ablation of triadin causes loss of cardiac Ca2+ release units, impaired excitation-contraction coupling, and cardiac arrhythmias

Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 05/2009; 106(18):7636-41. DOI: 10.1073/pnas.0902919106
Source: PubMed

ABSTRACT Heart muscle excitation-contraction (E-C) coupling is governed by Ca(2+) release units (CRUs) whereby Ca(2+) influx via L-type Ca(2+) channels (Cav1.2) triggers Ca(2+) release from juxtaposed Ca(2+) release channels (RyR2) located in junctional sarcoplasmic reticulum (jSR). Although studies suggest that the jSR protein triadin anchors cardiac calsequestrin (Casq2) to RyR2, its contribution to E-C coupling remains unclear. Here, we identify the role of triadin using mice with ablation of the Trdn gene (Trdn(-/-)). The structure and protein composition of the cardiac CRU is significantly altered in Trdn(-/-) hearts. jSR proteins (RyR2, Casq2, junctin, and junctophilin 1 and 2) are significantly reduced in Trdn(-/-) hearts, whereas Cav1.2 and SERCA2a remain unchanged. Electron microscopy shows fragmentation and an overall 50% reduction in the contacts between jSR and T-tubules. Immunolabeling experiments show reduced colocalization of Cav1.2 with RyR2 and substantial Casq2 labeling outside of the jSR in Trdn(-/-) myocytes. CRU function is impaired in Trdn(-/-) myocytes, with reduced SR Ca(2+) release and impaired negative feedback of SR Ca(2+) release on Cav1.2 Ca(2+) currents (I(Ca)). Uninhibited Ca(2+) influx via I(Ca) likely contributes to Ca(2+) overload and results in spontaneous SR Ca(2+) releases upon beta-adrenergic receptor stimulation with isoproterenol in Trdn(-/-) myocytes, and ventricular arrhythmias in Trdn(-/-) mice. We conclude that triadin is critically important for maintaining the structural and functional integrity of the cardiac CRU; triadin loss and the resulting alterations in CRU structure and protein composition impairs E-C coupling and renders hearts susceptible to ventricular arrhythmias.

Full-text

Available from: Clara Franzini-Armstrong, Feb 03, 2015
0 Followers
 · 
232 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In cardiac muscle, Ca(2+) release from sarcoplasmic reticulum (SR) is reduced with successively shorter coupling intervals of premature stimuli, a phenomenon known as SR Ca(2+) release refractoriness. We recently reported that the SR luminal Ca(2+) binding protein calsequestrin 2 (Casq2) contributes to release refractoriness in intact mouse hearts, but the underlying mechanisms remain unclear. Here, we further investigate the mechanisms responsible for physiological release refractoriness. Gene-targeted ablation of Casq2 (Casq2 KO) abolished SR Ca(2+) release refractoriness in isolated mouse ventricular myocytes. Surprisingly, impaired Ca(2+)-dependent inactivation of L-type Ca(2+) current (ICa), which is responsible for triggering SR Ca(2+) release, significantly contributed to loss of Ca(2+) release refractoriness in Casq2 KO myocytes. Recovery from Ca(2+)-dependent inactivation of ICa was significantly accelerated in Casq2 KO compared to wild-type (WT) myocytes. In contrast, voltage-dependent inactivation measured by using Ba(2+) as charge carrier was not significantly different between WT and Casq2 KO myocytes. Ca(2+)-dependent inactivation of ICa was normalized by intracellular dialysis of excess apo-CaM (20μM), which also partially restored physiological Ca(2+) release refractoriness in Casq2 KO myocytes. Our findings reveal that the intra-SR protein Casq2 is largely responsible for the phenomenon of SR Ca(2+) release refractoriness in murine ventricular myocytes. We also report a novel mechanism of impaired Ca(2+)-CaM-dependent inactivation of Cav1.2, which contributes to the loss of SR Ca(2+) release refractoriness in the Casq2 KO mouse model and, therefore, may further increase risk for ventricular arrhythmia in vivo. Copyright © 2015. Published by Elsevier Ltd.
    Journal of Molecular and Cellular Cardiology 03/2015; 82. DOI:10.1016/j.yjmcc.2015.02.027 · 5.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Excitable cells typically possess junctional membrane complexes (JMCs) constructed by the plasma membrane and the endo/sarcoplasmic reticulum (ER/SR) for channel crosstalk. These JMCs are termed triads in skeletal muscle, dyads in cardiac muscle, peripheral couplings in smooth and developing striated muscles, and subsurface cisterns in neurons. Junctophilin subtypes contribute to the formation and maintenance of JMCs by serving as a physical bridge between the plasma membrane and ER/SR membrane in different cell types. In muscle cells, junctophilin deficiency prevents JMC formation and functional crosstalk between cell-surface Ca2+ channels and ER/SR Ca2+ release channels. Human genetic mutations in junctophilin subtypes are linked to congenital hypertrophic cardiomyopathy and neurodegenerative diseases. Furthermore, growing evidence suggests that dysregulation of junctophilins induces pathological alterations in skeletal and cardiac muscle.
    Cell Calcium 01/2015; DOI:10.1016/j.ceca.2015.01.007 · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Excitation-contraction coupling in skeletal muscle depends, in part, on a functional interaction between the ligand-gated ryanodine receptor (RyR1) and integral membrane protein Trisk 95, localized to the sarcoplasmic reticulum membrane. Various domains on Trisk 95 can associate with RyR1, yet the domain responsible for regulating RyR1 activity has remained elusive. We explored the hypothesis that a luminal Trisk 95 KEKE motif (residues 200-232), known to promote RyR1 binding, may also form the RyR1 activation domain. Peptides corresponding to Trisk 95 residues 200-232 or 200-231 bound to RyR1 and increased the single channel activity of RyR1 by 1.49 ± 0.11-fold and 1.8 ± 0.15-fold respectively, when added to its luminal side. A similar increase in [(3)H]ryanodine binding, which reflects open probability of the channels, was also observed. This RyR1 activation is similar to activation induced by full length Trisk 95. Circular dichroism showed that both peptides were intrinsically disordered, suggesting a defined secondary structure is not necessary to mediate RyR1 activation. These data for the first time demonstrate that Trisk 95's 200-231 region is responsible for RyR1 activation. Furthermore, it shows that no secondary structure is required to achieve this activation, the Trisk 95 residues themselves are critical for the Trisk 95-RyR1 interaction.
    PLoS ONE 08/2012; 7(8):e43817. DOI:10.1371/journal.pone.0043817 · 3.53 Impact Factor