Article

EPR of Cu2+ prion protein constructs at 2 GHz using the g(perpendicular) region to characterize nitrogen ligation.

Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Biophysical Journal (Impact Factor: 3.83). 05/2009; 96(8):3354-62. DOI: 10.1016/j.bpj.2009.01.034
Source: PubMed

ABSTRACT A double octarepeat prion protein construct, which has two histidines, mixed with copper sulfate in a 3:2 molar ratio provides at most three imidazole ligands to each copper ion to form a square-planar Cu(2+) complex. This work is concerned with identification of the fourth ligand. A new (to our knowledge) electron paramagnetic resonance method based on analysis of the intense features of the electron paramagnetic resonance spectrum in the g( perpendicular) region at 2 GHz is introduced to distinguish between three and four nitrogen ligands. The methodology was established by studies of a model system consisting of histidine imidazole ligation to Cu(2+). In this spectral region at 2 GHz (S-band), g-strain and broadening from the possible rhombic character of the Zeeman interaction are small. The most intense line is identified with the M(I) = +1/2 extra absorption peak. Spectral simulation demonstrated that this peak is insensitive to cupric A(x) and A(y) hyperfine interaction. The spectral region to the high-field side of this peak is uncluttered and suitable for analysis of nitrogen superhyperfine couplings to determine the number of nitrogens. The spectral region to the low-field side of the intense extra absorption peak in the g( perpendicular) part of the spectrum is sensitive to the rhombic distortion parameters A(x) and A(y). Application of the method to the prion protein system indicates that two species are present and that the dominant species contains four nitrogen ligands. A new loop-gap microwave resonator is described that contains approximately 1 mL of frozen sample.

0 Bookmarks
 · 
188 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-adiabatic rapid sweep (NARS) EPR spectroscopy has been introduced for application to nitroxide-labeled biological samples (Kittell et al., 2011) [1]. Displays are pure absorption, and are built up by acquiring data in spectral segments that are concatenated. In this paper we extend the method to frozen solutions of copper-imidazole, a square planar copper complex with four in-plane nitrogen ligands. Pure absorption spectra are created from concatenation of 170 5-gauss segments spanning 850G at 1.9GHz. These spectra, however, are not directly useful since nitrogen superhyperfine couplings are barely visible. Application of the moving difference (MDIFF) algorithm to the digitized NARS pure absorption spectrum is used to produce spectra that are analogous to the first harmonic EPR. The signal intensity is about four times higher than when using conventional 100kHz field modulation, depending on line shape. MDIFF not only filters the spectrum, but also the noise, resulting in further improvement of the SNR for the same signal acquisition time. The MDIFF amplitude can be optimized retrospectively, different spectral regions can be examined at different amplitudes, and an amplitude can be used that is substantially greater than the upper limit of the field modulation amplitude of a conventional EPR spectrometer, which improves the signal-to-noise ratio of broad lines.
    Journal of Magnetic Resonance 08/2013; 236C:15-25. · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Copper is an essential nutrient for the normal development of the brain and nervous system, although the hallmark of several neurological diseases is a change in copper concentrations in the brain and central nervous system. Prion protein (PrP) is a copper-binding, cell-surface glycoprotein that exists in two alternatively folded conformations: a normal isoform (PrPC) and a disease-associated isoform (PrPSc). Prion diseases are a group of lethal neurodegenerative disorders that develop as a result of conformational conversion of PrPC into PrPSc. The pathogenic mechanism that triggers this conformational transformation with the subsequent development of prion diseases remains unclear. It has, however, been shown repeatedly that copper plays a significant functional role in the conformational conversion of prion proteins. In this review, we focus on current research that seeks to clarify the conformational changes associated with prion diseases and the role of copper in this mechanism, with emphasis on the latest applications of NMR and EPR spectroscopy to probe the interactions of copper with prion proteins.
    Magnetic Resonance in Chemistry 05/2013; 51(5):255-268. · 1.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Copper porphyrin dissolved in CH2Cl2:Toluene as fluid and frozen solution was studied as a function of temperature with X-band electron paramagnetic resonance (EPR). Quantitative interpretation was obtained with a recently developed Stochastic Liouville simulation method. For the first time we address the large spin system that translates into a 400 000 dimensional Liouville equation solved under slow-motion conditions. With a simple three parameter microscopic model, the temperature dependence of porphyrin rotational correlation time is determined to be in the range 1 − 10ns and a fast local motion is in the sub pico-second regime with an amplitude increasing with temperature. The methodology provides an important tool for arriving at an accurate set of spin Hamiltonian parameters since determining a unique set of parameters from a frozen solution EPR experiment is often difficult. Thus the proposed method discriminates between parameters proposed from frozen solution EPR experiment or quantum chemistry calculations. The methodology presented is expected to be valuable in obtaining molecular dynamics picture of metal proteins using EPR as well as in the study of artificial photosynthetic systems.
    Physical Chemistry Chemical Physics 01/2013; 15(26):10930-41. · 4.20 Impact Factor

Full-text (2 Sources)

Download
40 Downloads
Available from
May 31, 2014