EPR of Cu2+ Prion Protein Constructs at 2 GHz Using the g⊥ Region to Characterize Nitrogen Ligation

Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Biophysical Journal (Impact Factor: 3.97). 05/2009; 96(8):3354-62. DOI: 10.1016/j.bpj.2009.01.034
Source: PubMed


A double octarepeat prion protein construct, which has two histidines, mixed with copper sulfate in a 3:2 molar ratio provides at most three imidazole ligands to each copper ion to form a square-planar Cu(2+) complex. This work is concerned with identification of the fourth ligand. A new (to our knowledge) electron paramagnetic resonance method based on analysis of the intense features of the electron paramagnetic resonance spectrum in the g( perpendicular) region at 2 GHz is introduced to distinguish between three and four nitrogen ligands. The methodology was established by studies of a model system consisting of histidine imidazole ligation to Cu(2+). In this spectral region at 2 GHz (S-band), g-strain and broadening from the possible rhombic character of the Zeeman interaction are small. The most intense line is identified with the M(I) = +1/2 extra absorption peak. Spectral simulation demonstrated that this peak is insensitive to cupric A(x) and A(y) hyperfine interaction. The spectral region to the high-field side of this peak is uncluttered and suitable for analysis of nitrogen superhyperfine couplings to determine the number of nitrogens. The spectral region to the low-field side of the intense extra absorption peak in the g( perpendicular) part of the spectrum is sensitive to the rhombic distortion parameters A(x) and A(y). Application of the method to the prion protein system indicates that two species are present and that the dominant species contains four nitrogen ligands. A new loop-gap microwave resonator is described that contains approximately 1 mL of frozen sample.

Download full-text


Available from: Brian Bennett, Feb 06, 2014
44 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Bacillus subtilis version of SCO1 (BsSCO) is required for assembly of Cu(A) in cytochrome c oxidase and may function in thiol-disulfide exchange and/or copper delivery. BsSCO binds Cu(II) with ligation by two cysteines, one histidine and one water. However, copper is a catalyst of cysteine oxidation and BsSCO must avoid this reaction to remain functional. Time resolved, rapid freeze-quench (RFQ) electron paramagnetic resonance of apo-BsSCO reacting with Cu(II) reveals an initial Cu(II) species with two equatorially coordinated nitrogen atoms, but no sulfur. We propose that BsSCO evolves from this initial sulfur free coordination of Cu(II) to the final dithiolate species via a change in conformation, and that the initial binding by nitrogen is a means for BsSCO to avoid premature thiol oxidation.
    FEBS letters 02/2011; 585(6):861-4. DOI:10.1016/j.febslet.2011.02.014 · 3.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cu(II) is an essential element for life but is also associated with numerous and serious medical conditions, particularly neurodegeneration. Structural modeling of crystallization-resistant biological Cu(II) species relies on detailed spectroscopic analysis. Electron paramagnetic resonance (EPR) can, in principle, provide spin hamiltonian parameters that contain information on the geometry and ligand atom complement of Cu(II). Unfortunately, EPR spectra of Cu(II) recorded at the traditional X-band frequency are complicated by (i) strains in the region of the spectrum corresponding to the g(∥) orientation and (ii) potentially very many overlapping transitions in the g(⊥) region. The rapid progress of density functional theory computation as a means to correlate EPR and structure, and the increasing need to study Cu(II) associated with biomolecules in more biologically and biomedically relevant environments such as cells and tissue, have spurred the development of a technique for the extraction of a more complete set of spin hamiltonian parameters that is relatively straightforward and widely applicable. EPR at L-band (1-2 GHz) provides much enhanced spectral resolution and straightforward analysis via computer simulation methods. Herein, the anisotropic spin hamiltonian parameters and the nitrogen coordination numbers for two hitherto incompletely characterized Cu(II)-bound species of a prion peptide complex are determined by analysis of their L-band EPR spectra.
    Journal of the American Chemical Society 02/2011; 133(6):1814-23. DOI:10.1021/ja106550u · 12.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein-metal interactions determine and regulate many biological functions. Nanopipettes functionalized with peptide moieties can be used as sensors for metal ions in solution.
    RSC Advances 12/2012; 2(31):11638-11640. DOI:10.1039/C2RA21730A · 3.84 Impact Factor
Show more