Decision by division: making cortical maps.

Department of Neurobiology and Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
Trends in Neurosciences (Impact Factor: 12.9). 05/2009; 32(5):291-301. DOI: 10.1016/j.tins.2009.01.007
Source: PubMed

ABSTRACT In the past three decades, mounting evidence has revealed that specification of the basic cortical neuronal classes starts at the time of their final mitotic divisions in the embryonic proliferative zones. This early cell determination continues during the migration of the newborn neurons across the widening cerebral wall, and it is in the cortical plate that they attain their final positions and establish species-specific cytoarchitectonic areas. Here, the development and evolutionary expansion of the neocortex is viewed in the context of the radial unit and protomap hypotheses. A broad spectrum of findings gave insight into the pathogenesis of cortical malformations and the biological bases for the evolution of the modern human neocortex. We examine the history and evidence behind the concept of early specification of neurons and provide the latest compendium of genes and signaling molecules involved in neuronal fate determination and specification.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The precise timing of pyramidal cell migration from the ventricular germinal zone to the cortical plate is essential for establishing cortical layers, and migration errors can lead to neurodevelopmental disorders underlying psychiatric and neurological diseases. Here, we report that Wnt canonical as well as non-canonical signaling is active in pyramidal precursors during radial migration. We demonstrate using constitutive and conditional genetic strategies that transient downregulation of canonical Wnt/β-catenin signaling during the multipolar stage plays a critical role in polarizing and orienting cells for radial migration. In addition, we show that reduced canonical Wnt signaling is triggered cell autonomously by time-dependent expression of Wnt5A and activation of non-canonical signaling. We identify ephrin-B1 as a canonical Wnt-signaling-regulated target in control of the multipolar-to-bipolar switch. These findings highlight the critical role of Wnt signaling activity in neuronal positioning during cortical development. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
  • [Show abstract] [Hide abstract]
    ABSTRACT: New granule cell neurons (GCs) generated in the neonatal and adult subventricular zone (SVZ) have distinct patterns of input synapses in their dendritic domains. These synaptic input patterns determine the computations that the neurons eventually perform in the olfactory bulb. We observed that GCs generated earlier in postnatal life had acquired an 'adult' synaptic development only in one dendritic domain, and only later-born GCs showed an 'adult' synaptic development in both dendritic domains. It is unknown to what extent the distinct synaptic input patterns are already determined in SVZ progenitors and/or by the brain circuit into which neurons integrate. To distinguish these possibilities, we heterochronically transplanted retrovirally labeled SVZ progenitor cells. Once these transplanted progenitors, which mainly expressed Mash1, had differentiated into GCs, their glutamatergic input synapses were visualized by genetic tags. We observed that GCs derived from neonatal progenitors differentiating in the adult maintained their characteristic neonatal synapse densities. Grafting of adult SVZ progenitors to the neonate had a different outcome. These GCs formed synaptic densities that corresponded to neither adult nor neonatal patterns in two dendritic domains. In summary, progenitors in the neonatal and adult brain generate distinct GC populations and switch their fate to generate neurons with specific synaptic input patterns. Once they switch, adult progenitors require specific properties of the circuit to maintain their characteristic synaptic input patterns. Such determination of synaptic input patterns already at the progenitor-cell level may be exploited for brain repair to engineer neurons with defined wiring patterns.
    Development 12/2014; 142(2). DOI:10.1242/dev.110767 · 6.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The phenotype of excitatory cerebral cortex neurons is specified at the progenitor level, orchestrated by various intrinsic and extrinsic factors. Here, we provide evidence for a subcortical contribution to cortical progenitor regulation by thalamic axons via ephrin A5-EphA4 interactions. Ephrin A5 is expressed by thalamic axons and represents a high-affinity ligand for EphA4 receptors detected in cortical precursors. Recombinant ephrin A5-Fc protein, as well as ephrin A ligand-expressing, thalamic axons affect the output of cortical progenitor division in vitro. Ephrin A5-deficient mice show an altered division mode of radial glial cells (RGCs) accompanied by increased numbers of intermediate progenitor cells (IPCs) and an elevated neuronal production for the deep cortical layers at E13.5. In turn, at E16.5 the pool of IPCs is diminished, accompanied by reduced rates of generated neurons destined for the upper cortical layers. This correlates with extended infragranular layers at the expense of superficial cortical layers in adult ephrin A5-deficient and EphA4-deficient mice. We suggest that ephrin A5 ligands imported by invading thalamic axons interact with EphA4-expressing RGCs, thereby contributing to the fine-tuning of IPC generation and thus the proper neuronal output for cortical layers. © 2015. Published by The Company of Biologists Ltd.
    Development 12/2014; 142(1). DOI:10.1242/dev.104927 · 6.27 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014