Article

Highly Efficient ENU Mutagenesis in Zebrafish.

Hubrecht Institute for Developmental Biology and Stem Cell Research, , Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.
Methods in Molecular Biology (Impact Factor: 1.29). 02/2009; 546:3-12. DOI: 10.1007/978-1-60327-977-2_1
Source: PubMed

ABSTRACT ENU (N-ethyl-N-nitrosourea) mutagenesis is a widely accepted and proven method to introduce random point mutations in the genome. Because there are no targeted knockout strategies available for zebrafish so far, random mutagenesis is currently the preferred method in both forward and reverse genetic approaches. To obtain high-density mutagenized zebrafish, six consecutive ENU treatments are applied at weekly intervals to adult male zebrafish by bathing them in ENU solution. With this procedure an average germ line mutation load of one mutation every 1.0 x 10(5)-1.5 x 10(5) basepairs is reached routinely in our lab.

0 Followers
 · 
113 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The phenome is the complete set of phenotypes resulting from genetic variation in populations of an organism. Saturation of a phenome implies the identification and phenotypic description of mutations in all genes in an organism, potentially constrained to those encoding proteins. The human genome is believed to contain 20-25,000 protein coding genes, but only a small fraction of these have documented mutant phenotypes, thus the human phenome is far from complete. In model organisms, genetic saturation entails the identification of multiple mutant alleles of a gene or locus, allowing a consistent description of mutational phenotypes for that gene. Saturation of several model organisms has been attempted, usually by targeting annotated coding genes with insertional transposons (Drosophila melanogaster, Mus musculus) or by sequence directed deletion (Saccharomyces cerevisiae) or using libraries of antisense oligonucleotide probes injected directly into animals (Caenorhabditis elegans, Danio rerio). This paper reviews the general state of the human phenome, and discusses theoretical and practical considerations toward a saturation analysis in humans. Throughout, emphasis is placed on high penetrance genetic variation, of the kind typically asociated with monogenic versus complex traits.
    Current Genomics 11/2010; 11(7):482-99. DOI:10.2174/138920210793175886 · 2.87 Impact Factor
  • Source
    Mechanisms of Development 08/2009; 126. DOI:10.1016/j.mod.2009.06.690 · 2.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: TILLING (Targeting Induced Local Lesions IN Genomes) is a popular reverse genetic approach that has been successfully applied in several genetic model organisms such as zebrafish, rat, Drosophila, Arabidopsis, or medaka. In contrast to classical targeted knockout technologies that work in mice by directly targeting a gene of interest, TILLING follows an indirect strategy. The first step of the TILLING pipeline is the generation of a TILLING library that consists of large numbers of mutagenized individuals. In a second step, these individuals are screened for mutations in any gene of interest. Screening is performed by PCR amplification of specific exons from each individual of a library followed by mutation detection. This could be done, for example, by direct re-sequencing of PCR fragments or alternatively, by CEL1 endonuclease-mediated mutation discovery. Individuals carrying potentially deleterious point mutations are isolated from the library and mutant lines are established. TILLING allows the identification of a whole range of point mutations, covering nonsense, splice site, and missense mutations in only one screening round, because the generation of mutations by mutagenesis as well as the screening tools is not biased. Potential knockout mutations are initially the mutations of choice, but TILLING screens can also be used to isolate allelic series of point mutations ranging from complete null phenotypes to hypomorphic or even dominant-negative or conditional alleles. These allelic series can be helpful for a comprehensive functional analysis of a gene of interest. TILLING is applicable to any kind of genetically tractable model organism, as long as this model organism is amenable to chemical mutagenesis, and genomic sequence information for a gene of interest is available. This chapter describes the design and pipeline of a TILLING facility as we are currently operating it for zebrafish in Dresden. Protocols for mutation detection by direct re-sequencing are described in detail. However, alternatives to this pipeline do exist and will be mentioned briefly.
    Methods in molecular biology (Clifton, N.J.) 01/2011; 770:475-504. DOI:10.1007/978-1-61779-210-6_19 · 1.29 Impact Factor