Ubiquitin carboxyl-terminal hydrolase L1 contributes to the oocyte selective elimination in prepubertal mouse ovaries.

Shanghai Medical College of Fudan University, Shanghai, China.
Sheng li xue bao: [Acta physiologica Sinica] 05/2009; 61(2):175-84.
Source: PubMed

ABSTRACT Apoptosis of abnormal oocytes is essential for defective oocyte elimination during prepubertal ovary development, and the ubiquitin system regulates the cell apoptosis via the degradation of specific proteins. Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) is a component of the ubiquitin system, and the UCH-L1-dependent apoptosis is important for spermatogenesis. In the present study, the change in the number of follicles and the expression of UCH-L1 in oocytes were determined in prepubertal mouse ovaries by immunohistochemical techniques. A significant decrease in the follicular pool was found in prepubertal mouse ovaries during the period of day 21 to day 28 after birth, and accordingly, the UCH-L1 protein expression was increased, to some degree in association with Jun activation domain-binding protein 1 (Jab1) and cyclin-dependent kinase inhibitor p27(Kipl). The increased UCH-L1 protein, together with the corresponding changes of Jab1 was detected in morphologically abnormal oocytes of prepubertal ovaries. Through the immunofluorescent colocalization, UCH-L1 was shown concentrating in abnormal oocytes, and a parallel change in Jab1 was also seen. The affinity analysis confirmed the interaction between UCH-L1 and Jab1 in ovaries. These results suggest that UCH-L1 plays an important role, possibly in association with Jab1 and p27(Kipl), in selective elimination of abnormal oocytes during mouse prepubertal development.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Post-translational protein modification by ubiquitination, a signal for lysosomal or proteasomal proteolysis, can be regulated and reversed by deubiquitinating enzymes (DUBs). This study examined the roles of UCHL1 and UCHL3, two members of ubiquitin C-terminal hydrolase (UCH) family of DUBs, in murine fertilization and preimplantation development. Before fertilization, these proteins were associated with the oocyte cortex (UCHL1) and meiotic spindle (UCHL3). Intracytoplasmic injection of the general UCH-family inhibitor ubiquitin-aldehyde (UBAL) or antibodies against UCHL3 into mature metaphase II oocytes blocked fertilization by reducing sperm penetration of the zona pellucida and incorporation into the ooplasm, suggesting a role for cortical UCHL1 in sperm incorporation. Both UBAL and antibodies against UCHL1 injected at the onset of oocyte maturation (germinal vesicle stage) reduced the fertilizing ability of oocytes. The subfertile Uchl1(gad-/-) mutant mice showed an intriguing pattern of switched UCH localization, with UCHL3 replacing UCHL1 in the oocyte cortex. While fertilization defects were not observed, the embryos from homozygous Uchl1(gad-/-) mutant females failed to undergo morula compaction and did not form blastocysts in vivo, indicating a maternal effect related to UCHL1 deficiency. We conclude that the activity of oocyte UCHs contributes to fertilization and embryogenesis by regulating the physiology of the oocyte and blastomere cortex.
    Journal of Cellular Physiology 06/2011; 227(4):1592-603. · 3.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies published in Histochemistry and Cell Biology in the year 2011 represent once more a manifest of established and newly sophisticated techniques being exploited to put tissue- and cell type-specific molecules into a functional context. The review is therefore the Histochemistry and Cell Biology's yearly intention to provide interested readers appropriate summaries of investigations touching the areas of tissue biology, developmental biology, the biology of the immune system, stem cell research, the biology of subcellular compartments, in order to put the message of such studies into natural scientific-/human- and also pathological-relevant correlations.
    Histochemie 02/2012; 137(4):403-57. · 2.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Podocytes are terminally differentiated cells of the glomerular filtration barrier that react with hypertrophy in the course of injury such as in membranous nephropathy (MGN). The neuronal deubiquitinase ubiquitin C-terminal hydrolase L1 (UCH-L1) is expressed and activated in podocytes of human and rodent MGN. UCH-L1 regulates the mono-ubiquitin pool and induces accumulation of poly-ubiquitinated proteins in affected podocytes. Here, we investigated the role of UCH-L1 in podocyte hypertrophy and in the homeostasis of the hypertrophy associated "model protein" p27Kip1. A better understanding of the basic mechanisms leading to podocyte hypertrophy is crucial for the development of specific therapies in MGN. In human and rat MGN, hypertrophic podocytes exhibited a simultaneous up-regulation of UCH-L1 and of cytoplasmic p27Kip1 content. Functionally, inhibition of UCH-L1 activity and knockdown or inhibition of UCH-L1 attenuated podocyte hypertrophy by decreasing the total protein content in isolated glomeruli and in cultured podocytes. In contrast, UCH-L1 levels and activity increased podocyte hypertrophy and total protein content in culture, specifically of cytoplasmic p27Kip1. UCH-L1 enhanced cytoplasmic p27Kip1 levels by nuclear export and decreased poly-ubiquitination and proteasomal degradation of p27Kip1. In parallel, UCH-L1 increased podocyte turnover, migration and cytoskeletal rearrangement, which are associated with known oncogenic functions of cytoplasmic p27Kip1 in cancer. We propose that UCH-L1 induces podocyte hypertrophy in MGN by increasing the total protein content through altered degradation and accumulation of proteins such as p27Kip1 in the cytoplasm of podocytes. Modification of both UCH-L1 activity and levels could be a new therapeutic avenue to podocyte hypertrophy in MGN.
    Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 07/2014; · 5.09 Impact Factor


Available from