Article

The T-381C SNP in BNP gene may be modestly associated with type 2 diabetes: an updated meta-analysis in 49 279 subjects.

CNRS-8090-Institute of Biology, Pasteur Institute, Lille, France.
Human Molecular Genetics (Impact Factor: 6.68). 05/2009; 18(13):2495-501. DOI: 10.1093/hmg/ddp169
Source: PubMed

ABSTRACT A recent study reported an association between the brain natriuretic peptide (BNP) promoter T-381C polymorphism (rs198389) and protection against type 2 diabetes (T2D). As replication in several studies is mandatory to confirm genetic results, we analyzed the T-381C polymorphism in seven independent case-control cohorts and in 291 T2D-enriched pedigrees totalling 39 557 subjects of European origin. A meta-analysis of the seven case-control studies (n = 39 040) showed a nominal protective effect [odds ratio (OR) = 0.86 (0.79-0.94), P = 0.0006] of the CC genotype on T2D risk, consistent with the previous study. By combining all available data (n = 49 279), we further confirmed a modest contribution of the BNP T-381C polymorphism for protection against T2D [OR = 0.86 (0.80-0.92), P = 1.4 x 10(-5)]. Potential confounders such as gender, age, obesity status or family history were tested in 4335 T2D and 4179 normoglycemic subjects and they had no influence on T2D risk. This study provides further evidence of a modest contribution of the BNP T-381C polymorphism in protection against T2D and illustrates the difficulty of unambiguously proving modest-sized associations even with large sample sizes.

0 Followers
 · 
114 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many advances have been made in the diagnosis and management of heart failure (HF) in recent years. Cardiac biomarkers are an essential tool for clinicians: point of care B-type natriuretic peptide (BNP) and its N-terminal counterpart (NT-proBNP) levels help distinguish cardiac from non-cardiac causes of dyspnea and are also useful in the prognosis and monitoring of the efficacy of therapy. One of the major limitations of HF biomarkers is in obese patients where the relationship between BNP and NT-proBNP levels and myocardial stiffness is complex. Recent data suggest an inverse relationship between BNP and NT-proBNP levels and body mass index. Given the ever-increasing prevalence of obesity world-wide, it is important to understand the benefits and limitations of HF biomarkers in this population. This review will explore the biology, physiology, and pathophysiology of these peptides and the cardiac endocrine paradox in HF. We also examine the clinical evidence, mechanisms, and plausible biological explanations for the discord between BNP levels and HF in obese patients.
    International Journal of Cardiology 08/2014; 176(3). DOI:10.1016/j.ijcard.2014.08.007 · 6.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Although the plasma B-type natriuretic peptide (BNP) level is a marker of heart failure, it is unclear whether BNP per se plays a pivotal role for pathogenic mechanisms underlying the development of ischemic heart disease (IHD). In this study, we retrospectively examined the plasma BNP levels in stable patients with IHD and compared to stable patients with cardiovascular diseases other than IHD. Methods: The study population was 2088 patients (1698 males and 390 females) who were admitted to our hospital due to IHD (n = 1,661) and non-IHD (n = 427) and underwent cardiac catheterization. Measurements of the hemodynamic parameters and blood sampling were performed. Results: The plasma BNP levels were significantly lower in the IHD group than in the non-IHD group (p<0.001). The multiple regression analysis examining the logBNP values showed that age, a male gender, low left ventricular ejection fraction, low body mass index, serum creatinine, atrial fibrillation and IHD per se were significant explanatory variables. When the total study population was divided according to gender, the plasma BNP levels were found to be significantly lower in the IHD group than in the non-IHD group among males (p<0.001), but not females (p = NS). Furthermore, a multiple logistic regression analysis of IHD showed the logBNP value to be a significant explanatory variable in males (regression coefficient: -0.669, p<0.001), but not females (p = NS). Conclusions: The plasma BNP levels were relatively low in stable patients with IHD compared with those observed in stable patients with non-IHD; this tendency was evident in males. Perhaps, the low reactivity of BNP is causally associated with IHD in males. We hope that this study will serve as a test of future prospective studies.
    PLoS ONE 10/2014; 9(10):e108983. DOI:10.1371/journal.pone.0108983 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Natriuretic Peptides (NP) are a group of peptide-hormones mainly secreted from the heart, signalling via c-GMP coupled receptors. NP are well known for their renal and cardiovascular actions, reducing arterial blood pressure as well as sodium reabsorption. Novel physiological functions have been discovered in recent years, including activation of lipolysis, lipid oxidation, and mitochondrial respiration. Together, these responses promote white adipose tissue browning, increase muscular oxidative capacity, particularly during physical exercise, and protect against diet-induced obesity and insulin resistance. Exaggerated NP release is a common finding in congestive heart failure. In contrast, NP deficiency is observed in obesity and in type-2 diabetes, pointing to an involvement of NP in the pathophysiology of metabolic disease. Based upon these findings, the NP system holds the potential to be amenable to therapeutical intervention against pandemic diseases such as obesity, insulin resistance, and arterial hypertension. Various therapeutic approaches are currently under development. This paper reviews the current knowledge on the metabolic effects of the NP system and discusses potential therapeutic applications.
    Pharmacology [?] Therapeutics 04/2014; DOI:10.1016/j.pharmthera.2014.04.007 · 7.75 Impact Factor