Article

Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease.

Department of Anatomy and Neurobiology, Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.
Neurobiology of aging (Impact Factor: 5.94). 05/2009; 30(7):1026-36. DOI: 10.1016/j.neurobiolaging.2009.04.002
Source: PubMed

ABSTRACT To determine the frequency and possible cognitive effect of histological Alzheimer's disease (AD) in autopsied older nondemented individuals.
Senile plaques (SPs) and neurofibrillary tangles (NFTs) were assessed quantitatively in 97 cases from 7 Alzheimer's Disease Centers (ADCs). Neuropathological diagnoses of AD (npAD) were also made with four sets of criteria. Adjusted linear mixed models tested differences between participants with and without npAD on the quantitative neuropathology measures and psychometric test scores prior to death. Spearman rank-order correlations between AD lesions and psychometric scores at last assessment were calculated for cases with pathology in particular regions.
Washington University Alzheimer's Disease Research Center.
Ninety-seven nondemented participants who were age 60 years or older at death (mean=84 years).
About 40% of nondemented individuals met at least some level of criteria for npAD; when strict criteria were used, about 20% of cases had npAD. Substantial overlap of Braak neurofibrillary stages occurred between npAD and no-npAD cases. Although there was no measurable cognitive impairment prior to death for either the no-npAD or npAD groups, cognitive function in nondemented aging appears to be degraded by the presence of NFTs and SPs.
Neuropathological processes related to AD in persons without dementia appear to be associated with subtle cognitive dysfunction and may represent a preclinical stage of the illness. By age 80-85 years, many nondemented older adults have substantial AD pathology.

1 Bookmark
 · 
156 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent evidence indicates that U1-70K and other U1 small nuclear ribonucleoproteins (snRNPs) are sarkosyl-insoluble and associate with tau neurofibrillary tangles selectively in Alzheimer disease (AD). Currently, the mechanisms underlying the conversion of soluble nuclear U1 snRNPs into insoluble cytoplasmic aggregates remain elusive. Based on the biochemical and subcellular distribution properties of U1-70K in AD we hypothesized that aggregated U1-70K itself or other biopolymers (e.g. proteins or nucleic acids) interact with and sequester natively folded soluble U1-70K into insoluble aggregates. Here we demonstrate that total homogenates from AD brain induce soluble U1-70K from control brain or recombinant U1-70K to become sarkosyl-insoluble. This effect was not dependent on RNA, and did not correlate with detergent-insoluble tau levels as AD homogenates with reduced levels of these components were still capable of inducing U1-70K aggregation. In contrast, proteinase K-treated AD homogenates and sarkosyl-soluble AD fractions were unable to induce U1-70K aggregation, indicating that aggregated proteins in AD brain are responsible for inducing soluble U1-70K aggregation. It was determined that the C-terminus of U1-70K, that harbors two disordered low-complexity (LC) domains, is necessary for U1-70K aggregation. Moreover, both LC1 and LC2 domains were sufficient for aggregation. Finally, protein cross-linking and mass spectrometry studies demonstrated that a U1-70K fragment harboring the LC1 domain directly interacts with aggregated U1-70K in AD brain. Our results support a hypothesis that aberrant forms of U1-70K in AD can directly sequester soluble forms of U1-70K into insoluble aggregates.
    Journal of Biological Chemistry 10/2014; 289(51). DOI:10.1074/jbc.M114.562959 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As of 2010, the worldwide economic impact of dementia was estimated at $604 billion USD; and without discovery of a cure or effective interventions to delay disease progression, dementia’s annual global economic impact is expected to surpass $1 trillion USD as early as 2030. Alzheimer’s disease (AD) is the leading cause of dementia accounting for over 75% of all cases. Toxic accumulation of amyloid beta (Aβ), either by overproduction or some clearance failure, is thought to be an underlying mechanism of the neuronal cell death characteristic of AD—though this amyloid hypothesis has been increasingly challenged in recent years. A compelling alternative hypothesis points to chronic neuroinflammation as a common root in late-life degenerative diseases including AD. Apolipoprotein-E (APOE) genotype is the strongest genetic risk factor for AD: APOE-ε4 is proinflammatory and individuals with this genotype accumulate more Aβ, are at high risk of developing AD, and almost half of all AD patients have at least one ε4 allele. Recent studies suggest a bidirectional relationship exists between sleep and AD pathology. Sleep may play an important role in Aβ clearance, and getting good quality sleep vs. poor quality sleep might reduce the AD risk associated with neuroinflammation and the ε4 allele. Taken together, these findings are particularly important given the sleep disruptions commonly associated with AD and the increased burden disrupted sleep poses for AD caregivers. The current review aims to: (1) identify individuals at high risk for dementia who may benefit most from sleep interventions; (2) explore the role poor sleep quality plays in exacerbating AD type dementia; (3) examine the science of sleep interventions to date; and (4) provide a road map in pursuit of comprehensive sleep interventions, specifically targeted to promote cognitive function and delay progression of dementia.
    Frontiers in Aging Neuroscience 12/2014; 6:325. DOI:10.3389/fnagi.2014.00325 · 2.84 Impact Factor
  • Source
    Saudi Pharmaceutical Journal 01/2015; 35. DOI:10.1016/j.jsps.2015.01.017 · 1.00 Impact Factor

Full-text (2 Sources)

Download
39 Downloads
Available from
Jun 4, 2014