XAP2 inhibits glucocorticoid receptor activity in mammalian cells.

Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany.
FEBS letters (Impact Factor: 3.54). 05/2009; 583(9):1493-8. DOI: 10.1016/j.febslet.2009.03.072
Source: PubMed

ABSTRACT XAP2 is member of a protein family sharing the TPR protein interaction motif. It displays close homology to the immunophilins FKBP51 and FKBP52 that act via the Hsp90 folding machinery to regulate the glucocorticoid receptor (GR). We show that XAP2 inhibits GR by reducing its responsiveness to hormone in transcriptional activation. The effect of XAP2 on GR requires its interaction with Hsp90 through the TPR motif. The PPIase-like region turned out to be enzymatically inactive. Thus, PPIase activity is not essential for the action of XAP2 on GR, similarly to FKBP51 and FKBP52.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The aryl-hydrocarbon receptor-interacting protein (AIP) interacts with several protein binding partners and has been associated with pituitary tumor development. Here, we report nearly complete (1)H, (13)C and (15)N chemical shift assignments for the N-terminal AIP(2-166) segment, which has been predicted to represent a FKBP-type PPIase domain. Sequence alignment with the prototypic FKBP12, however, reveals disagreements between the AIP chemical shift index consensus and the corresponding FKBP12 secondary structure elements.
    Biomolecular NMR Assignments 01/2012; · 0.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Familial pituitary adenomas can occur in MEN1 and Carney complex, as well as in the recently characterized familial isolated pituitary adenoma (FIPA) syndrome. FIPA is an autosomal dominant disease with incomplete penetrance, characterized by early-onset disease, often aggressive tumor growth and a predominance of somatotroph and lactotroph adenomas. In 20% of FIPA families, heterozygous mutations have been described in the aryl hydrocarbon receptor interacting (AIP) gene, whereas in other families the causative gene(s) are unknown. It has been suggested that AIP is a tumor suppressor gene and although experimental data support this hypothesis, the exact molecular mechanism by which its disruption leads to tumorigenesis is unclear. Here we discuss the clinical, genetic and molecular features of patients with FIPA.
    Trends in Endocrinology and Metabolism 07/2010; 21(7):419-27. · 8.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pituitary adenomas are one of the most frequent intracranial tumors and occur with a prevalence of approximately 1:1000 in the developed world. Pituitary adenomas have a serious disease burden, and their management involves neurosurgery, biological therapies, and radiotherapy. Early diagnosis of pituitary tumors while they are smaller may help increase cure rates. Few genetic predictors of pituitary adenoma development exist. Recent years have seen two separate, complimentary advances in inherited pituitary tumor research. The clinical condition of familial isolated pituitary adenomas (FIPA) has been described, which encompasses the familial occurrence of isolated pituitary adenomas outside of the setting of syndromic conditions like multiple endocrine neoplasia type 1 and Carney complex. FIPA families comprise approximately 2% of pituitary adenomas and represent a clinical entity with homogeneous or heterogeneous pituitary adenoma types occurring within the same kindred. The aryl hydrocarbon receptor interacting protein (AIP) gene has been identified as causing a pituitary adenoma predisposition of variable penetrance that accounts for 20% of FIPA families. Germline AIP mutations have been shown to associate with the occurrence of large pituitary adenomas that occur at a young age, predominantly in children/adolescents and young adults. AIP mutations are usually associated with somatotropinomas, but prolactinomas, nonfunctioning pituitary adenomas, Cushing disease, and other infrequent clinical adenoma types can also occur. Gigantism is a particular feature of AIP mutations and occurs in more than one third of affected somatotropinoma patients. Study of pituitary adenoma patients with AIP mutations has demonstrated that these cases raise clinical challenges to successful treatment. Extensive research on the biology of AIP and new advances in mouse Aip knockout models demonstrate multiple pathways by which AIP may contribute to tumorigenesis. This review assesses the current clinical and therapeutic characteristics of more than 200 FIPA families and addresses research findings among AIP mutation-bearing patients in different populations with pituitary adenomas.
    Endocrine Reviews 01/2013; 34(2). · 14.87 Impact Factor


Available from