Article

Local insulin-like growth factor I prevents sepsis-induced muscle atrophy.

Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA.
Metabolism: clinical and experimental (Impact Factor: 3.61). 05/2009; 58(6):787-97. DOI: 10.1016/j.metabol.2009.01.015
Source: PubMed

ABSTRACT The present study tests the hypotheses that local bioavailability of insulin-like growth factor I (IGF-I) is capable of regulating muscle protein balance and that muscle-directed IGF-I can selectively maintain muscle mass during bacterial infection. Initial studies in C57BL/6 mice demonstrated that increasing or decreasing bioavailable IGF-I within muscle by local administration of either Leu(24) Ala(31) IGF-I or IGF binding protein 1, respectively, produced proportional changes in surrogate markers (eg, phosphorylation of 4E-BP1 and S6K1) of protein synthesis. We next examined the ability of a sustained local administration of IGF-I to prevent sepsis-induced muscle atrophy over a 5-day period. At the time of cecal ligation and puncture or sham surgery, mice had a time-release pellet containing IGF-I implanted next to the gastrocnemius and a placebo pellet placed in the contralateral limb. Data indicated that IGF-I released locally only affected the adjacent muscle and was not released into the circulation. Gastrocnemius from septic mice containing the placebo pellet was atrophied and had a reduced IGF-I protein content. In contrast, locally directed IGF-I increased IGF-I protein within adjacent muscle to basal control levels. This change was associated with a proportional increase in muscle weight and protein, as well as increased phosphorylation of 4E-BP1 and the redistribution of eIF4E from the inactive eIF4E4EBP1 complex to the active eIF4EeIF4G complex. Local IGF-I also prevented the sepsis-induced increase in atrogin-1 messenger RNA in the exposed muscle. Finally, local IGF-I prevented the sepsis-induced increase in muscle interleukin-6 messenger RNA. Thus, muscle-directed IGF-I attenuates the sepsis-induced atrophic response apparently by increasing muscle protein synthesis and potentially decreasing proteolysis. Collectively, our data suggest that agents that increase the bioavailability of IGF-I within muscle per se might be effective in ameliorating the sepsis-induced loss of muscle mass without having undesirable effects on metabolic processes in distant organs.

Download full-text

Full-text

Available from: Charles Lang, Feb 03, 2014
0 Followers
 · 
107 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reduced testosterone as a result of catabolic illness or aging is associated with loss of muscle and increased adiposity. We hypothesized that these changes in body composition occur because of altered rates of protein synthesis under basal and nutrient-stimulated conditions that are tissue specific. The present study investigated such mechanisms in castrated male rats (75% reduction in testosterone) with demonstrated glucose intolerance. Over 9 wk, castration impaired body weight gain, which resulted from a reduced lean body mass and preferential sparing of adipose tissue. Castration decreased gastrocnemius weight, but this atrophy was not associated with reduced basal muscle protein synthesis or differences in plasma IGF-I, insulin, or individual amino acids. However, oral leucine failed to normally stimulate muscle protein synthesis in castrated rats. In addition, castration-induced atrophy was associated with increased 3-methylhistidine excretion and in vitro-determined ubiquitin proteasome activity in skeletal muscle, changes that were associated with decreased atrogin-1 or MuRF1 mRNA expression. Castration decreased heart and kidney weight without reducing protein synthesis and did not alter either cardiac output or glomerular filtration. In contradistinction, the weight of the retroperitoneal fat depot was increased in castrated rats. This increase was associated with an elevated rate of basal protein synthesis, which was unresponsive to leucine stimulation. Castration also decreased whole body fat oxidation. Castration increased TNFα, IL-1α, IL-6, and NOS2 mRNA in fat but not muscle. In summary, the castration-induced muscle wasting results from an increased muscle protein breakdown and the inability of leucine to stimulate protein synthesis, whereas the expansion of the retroperitoneal fat depot appears mediated in part by an increased basal rate of protein synthesis-associated increased inflammatory cytokine expression.
    AJP Endocrinology and Metabolism 09/2009; 297(5):E1222-32. DOI:10.1152/ajpendo.00473.2009 · 4.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Loss of lean body mass is a characteristic feature of the septic response, and the mechanisms responsible for this decrease and means of prevention have not been fully elucidated. The present study tested the hypothesis that in vitro treatment of skeletal muscle with lithium chloride (LiCl), a glycogen synthase kinase (GSK) 3 inhibitor, would reverse both the sepsis-induced increase in muscle protein degradation and inhibition of protein synthesis. Sepsis decreased GSK-3[beta] phosphorylation and increased GSK-3[beta] activity, under basal conditions. Sepsis increased muscle protein degradation, with a concomitant increase in atrogin 1 and MuRF1 mRNA and 26S proteosome activity. Incubation of septic muscle with LiCl completely reversed the increased GSK-3[beta] activity and decreased proteolysis to basal nonseptic values, but only partially reduced proteosome activity and did not diminish atrogene expression. Lithium chloride also did not ameliorate the sepsis-induced increase in LC3-II, a marker for activated autophagy. In contrast, LiCl increased protein synthesis only in nonseptic control muscle. The inability of septic muscle to respond to LiCl was independent of its ability to reverse the sepsis-induced increase in eukaryotic initiation factor (eIF) 2B[varepsilon] phosphorylation, decreased eIF2B activity, or the reduced phosphorylation of FOXO3, but instead was more closely associated with the continued suppression of mTOR (mammalian target of rapamycin) kinase activity (e.g., reduced phosphorylation of 4E-BP1 and S6). These data suggest that in vitro lithium treatment, which inhibited GSK-3[beta] activity, (a) effectively reversed the sepsis-induced increase in proteolysis, but only in part by a reduction in the ubiquitin-proteosome pathway and not by a reduction in autophagy; and (b) was ineffective at reversing the sepsis-induced decrease in muscle protein synthesis. This lithium-resistant state seems mediated at the level of mTOR and not eIF2/eIF2B. Hence, use of GSK-3[beta] inhibitors in the treatment of sepsis may not be expected to fully correct the imbalance in muscle protein turnover.
    Shock (Augusta, Ga.) 01/2010; 35(3):266-74. DOI:10.1097/SHK.0b013e3181fd068c · 2.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sepsis and lipopolysaccharide (LPS) may decrease skeletal muscle protein synthesis by impairing mTOR (mammalian target of rapamycin) activity. The role of mTOR in regulating muscle protein synthesis was assessed in wild-type (WT) and mTOR heterozygous (+/-) mice under basal conditions and in response to LPS and/or leucine stimulation. No difference in body weight of mTOR(+/-) mice was observed compared with WT mice; whereas whole body lean body mass was reduced. Gastrocnemius weight was decreased in mTOR(+/-) mice, which was attributable in part to a reduced rate of basal protein synthesis. LPS decreased muscle protein synthesis in WT and mTOR(+/-) mice to the same extent. Reduced muscle protein synthesis in mTOR(+/-) mice under basal and LPS-stimulated conditions was associated with lower 4E-BP1 and S6K1 phosphorylation. LPS also decreased PRAS40 phosphorylation and increased phosphorylation of raptor and IRS-1 (Ser(307)) to the same extent in WT and mTOR(+/-) mice. Muscle atrogin-1 and MuRF1 mRNA content was elevated in mTOR(+/-) mice under basal conditions, implying increased ubiquitin-proteasome-mediated proteolysis, but the LPS-induced increase in these atrogenes was comparable between groups. Plasma insulin and IGF-I as well as tissue expression of TNFalpha, IL-6, or NOS2 did not differ between WT and mTOR(+/-) mice. Finally, whereas LPS impaired the ability of leucine to stimulate muscle protein synthesis and 4E-BP1 phosphorylation in WT mice, this inflammatory state rendered mTOR(+/-) mice leucine unresponsive. These data support the idea that the LPS-induced reduction in mTOR activity is relatively more important in regulating skeletal muscle mass in response to nutrient stimulation than under basal conditions.
    AJP Endocrinology and Metabolism 04/2010; 298(6):E1283-94. DOI:10.1152/ajpendo.00676.2009 · 4.09 Impact Factor
Show more