Article

Local insulin-like growth factor I prevents sepsis-induced muscle atrophy.

Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA.
Metabolism: clinical and experimental (Impact Factor: 3.61). 05/2009; 58(6):787-97. DOI: 10.1016/j.metabol.2009.01.015
Source: PubMed

ABSTRACT The present study tests the hypotheses that local bioavailability of insulin-like growth factor I (IGF-I) is capable of regulating muscle protein balance and that muscle-directed IGF-I can selectively maintain muscle mass during bacterial infection. Initial studies in C57BL/6 mice demonstrated that increasing or decreasing bioavailable IGF-I within muscle by local administration of either Leu(24) Ala(31) IGF-I or IGF binding protein 1, respectively, produced proportional changes in surrogate markers (eg, phosphorylation of 4E-BP1 and S6K1) of protein synthesis. We next examined the ability of a sustained local administration of IGF-I to prevent sepsis-induced muscle atrophy over a 5-day period. At the time of cecal ligation and puncture or sham surgery, mice had a time-release pellet containing IGF-I implanted next to the gastrocnemius and a placebo pellet placed in the contralateral limb. Data indicated that IGF-I released locally only affected the adjacent muscle and was not released into the circulation. Gastrocnemius from septic mice containing the placebo pellet was atrophied and had a reduced IGF-I protein content. In contrast, locally directed IGF-I increased IGF-I protein within adjacent muscle to basal control levels. This change was associated with a proportional increase in muscle weight and protein, as well as increased phosphorylation of 4E-BP1 and the redistribution of eIF4E from the inactive eIF4E4EBP1 complex to the active eIF4EeIF4G complex. Local IGF-I also prevented the sepsis-induced increase in atrogin-1 messenger RNA in the exposed muscle. Finally, local IGF-I prevented the sepsis-induced increase in muscle interleukin-6 messenger RNA. Thus, muscle-directed IGF-I attenuates the sepsis-induced atrophic response apparently by increasing muscle protein synthesis and potentially decreasing proteolysis. Collectively, our data suggest that agents that increase the bioavailability of IGF-I within muscle per se might be effective in ameliorating the sepsis-induced loss of muscle mass without having undesirable effects on metabolic processes in distant organs.

Download full-text

Full-text

Available from: Charles Lang, Feb 03, 2014
0 Followers
 · 
99 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Electrically stimulated muscle contraction is a potential clinical therapy to treat sepsis-induced myopathy; however, whether sepsis alters contraction-induced anabolic signaling is unknown. Polymicrobial peritonitis was produced by cecal ligation and puncture (CLP) in male C57BL/6 mice and time-matched, pair-fed controls (CON). At ~24 h post-CLP, the right hindlimb was electrically stimulated via the sciatic nerve to evoke maximal muscle contractions and the gastrocnemius was collected 2 h later. Protein synthesis was increased by muscle contraction in CON mice. Sepsis suppressed the rate of synthesis in both the non-stimulated (31%) and stimulated (57%) muscle versus CON. Contraction of muscle in CON mice increased the phosphorylation of mTORC1 substrates S6K1 Thr (8-fold), S6K1 ThrSer (7-fold) and 4E-BP1 Ser (11-fold). Sepsis blunted the contraction-induced phosphorylation of S6K1 Thr (67%), S6K1 ThrSer (46%) and 4E-BP1 Ser (85%). Conversely, sepsis did not appear to modulate protein elongation as eEF2 Thr phosphorylation was decreased similarly by muscle contraction in both groups. MAPK signaling was discordant following muscle contraction in septic muscle; phosphorylation of ERK ThrTyr and p38 ThrTyr was increased similarly in both CON and CLP mice while sepsis prevented the contraction-induced phosphorylation of JNK ThrTyr and c-JUN Ser. The expression of IL-6 and TNF-α mRNA in muscle was increased by sepsis, and contraction increased TNF-α to a greater extent in muscle from septic than CON mice. Injection of the mTOR inhibitor Torin2 in separate mice confirmed that contraction-induced increases in S6K1 and 4E-BP1 were mTOR-mediated. These findings demonstrate that resistance to contraction-induced anabolic signaling occurs during sepsis and is predominantly mTORC1-dependent.
    Shock (Augusta, Ga.) 11/2014; 43(4). DOI:10.1097/SHK.0000000000000304 · 2.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Patients with chronic obstructive pulmonary disease (COPD), acute lung injury and critical care illness may develop hypercapnia. Many of these patients often have muscle dysfunction which increases morbidity and impairs their quality of life. Here, we investigated whether hypercapnia leads to skeletal muscle atrophy. Mice exposed to high CO2 had decreased skeletal muscle wet weight, fiber diameter, and strength. Cultured myotubes exposed to high CO2 had reduced fiber diameter, protein/DNA ratio and anabolic capacity. High CO2 induced the expression of MuRF1 in vivo and in vitro, while MuRF1-/- mice exposed to high CO2 did not develop muscle atrophy. AMPK, a metabolic sensor, was activated in myotubes exposed to high CO2 and loss-of-function studies showed that AMPK-α2 isoform is necessary for MuRF1 up-regulation and myofiber size reduction. High CO2 induced AMPK-α2 activation, triggering the phosphorylation and nuclear translocation of FoxO3a, and leading to an increase in MuRF1 expression and myotube atrophy. Accordingly, we provide evidence that high CO2 activates skeletal muscle atrophy via AMPKα2-FoxO3a-MuRF1, which is of biological and potentially clinical significance in patients with lung diseases and hypercapnia. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    Journal of Biological Chemistry 02/2015; 290(14). DOI:10.1074/jbc.M114.625715 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Increased AMP-activated protein kinase (AMPK) activity leads to enhanced fatty acid utilization, while also promoting increased ubiquitin-dependent proteolysis (UDP) in mammalian skeletal muscle. β-guanidinopropionic acid (βGPA) is a commercially available dietary supplement that has been shown to promote an AMPK-dependent increase in fatty acid utilization and aerobic capacity in mammals by compromising creatine kinase function. However, it remains unknown if continuous βGPA supplementation can negatively impact skeletal muscle growth in a rapidly growing juvenile. The current study was conducted to examine the effect of βGPA supplementation on whole-body and skeletal muscle growth in juvenile and young adult mice. Three-week old, post weanling CD-1 mice were fed a standard rodent chow that was supplemented with either 2 % (w/w) α-cellulose (control) or βGPA. Control and βGPA-fed mice (n = 6) were sampled after 2, 4, and 8 weeks. Whole-body and hindlimb muscle masses were significantly (P < 0.05) reduced in βGPA-fed mice by 2 weeks. The level of AMPK (T172) phosphorylation increased significantly (P < 0.05) in the gastrocnemius of βGPA-fed versus control mice at 2 weeks, but was not significantly different at the 4- and 8-week time points. Further analysis revealed a significant (P < 0.05) increase in the skeletal muscle-specific ubiquitin ligase MAFbx/Atrogin-1 protein and total protein ubiquitination in the gastrocnemius of βGPA versus control mice at the 8-week time point. Our data indicate that feeding juvenile mice a βGPA-supplemented diet significantly reduced whole-body and skeletal muscle growth that was due, at least in part, to an AMPK-independent increase in UDP.
    Molecular and Cellular Biochemistry 02/2015; 403(1-2). DOI:10.1007/s11010-015-2357-7 · 2.39 Impact Factor