Article

Array comparative genomic hybridization identifies a distinct DNA copy number profile in renal cell cancer associated with hereditary leiomyomatosis and renal cell cancer.

Department of Medical Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
Genes Chromosomes and Cancer (Impact Factor: 3.55). 05/2009; 48(7):544-51. DOI: 10.1002/gcc.20663
Source: PubMed

ABSTRACT Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a tumor predisposition syndrome with cutaneous and uterine leiomyomatosis as well as renal cell cancer (RCC) as its clinical manifestations. HLRCC is caused by heterozygous germline mutations in the fumarate hydratase (fumarase) gene. In this study, we used array comparative genomic hybridization to identify the specific copy number changes characterizing the HLRCC-associated RCCs. The study material comprised formalin-fixed paraffin-embedded renal tumors obtained from Finnish patients with HLRCC. All 11 investigated tumors displayed the papillary type 2 histopathology typical for HLRCC renal tumors. The most frequent copy number changes detected in at least 3/11 (27%) of the tumors were gains in chromosomes 2, 7, and 17, and losses in 13q12.3-q21.1, 14, 18, and X. These findings provide genetic evidence for a distinct copy number profile in HLRCC renal tumors compared with sporadic RCC tumors of the same histopathological subtype, and delineate chromosomal regions that associate with this very aggressive form of RCC.

0 Bookmarks
 · 
63 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inherited susceptibility to kidney cancer is a fascinating and complex topic. Our knowledge about types of genetic syndromes associated with an increased risk of disease is continually expanding. Currently, there are 10 syndromes associated with an increased risk of all types of kidney cancer, which are reviewed herein. Clear cell kidney cancer is associated with von Hippel Lindau disease, chromosome 3 translocations, PTEN hamartomatous syndrome, and mutations in the BAP1 gene as well as several of the genes encoding the proteins comprising the succinate dehydrogenase complex (SDHB/C/D). Type 1 papillary kidney cancers arise in conjunction with germline mutations in MET and type 2 as part of hereditary leiomyomatosis and kidney cell cancer (fumarate hydratase [FH] mutations). Chromophone and oncocytic kidney cancers are predominantly associated with Birt-Hogg-Dubé syndrome. Patients with Tuberous Sclerosis Complex (TSC) commonly have angiomyolipomas and rarely their malignant counterpart epithelioid angiomyolipomas. The targeted therapeutic options for the kidney cancer associated with these diseases are just starting to expand and are an area of active clinical research.
    Advances in chronic kidney disease 01/2014; 21(1):81-90. · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of molecular markers in the diagnostics of gliomas aids histopathological diagnosis and allows their further classification into clinically significant subgroups. The aim of this study was to characterize the methylation pattern of the O(6) -methylguanine-DNA methyltransferase (MGMT) promoter, gene copy number aberrations, and isocitrate dehydrogenase I (IDH1) mutation in gliomas. We studied 51 gliomas (15 oligodendrogliomas, 18 oligoastrocytomas, 3 astrocytomas, and 15 glioblastomas) by pyrosequencing, array comparative genome hybridization (CGH), and immunohistochemistry. MGMT hypermethylation was observed in 100% of oligoastrocytomas, 93% of oligodendrogliomas, and 47% of glioblastomas. The most frequently altered chromosomal regions were deletions of 1p31.1/21.1-22.2 and 19q13.3qter in oligodendroglial tumors, and losses of 9p21.3, 10q25.3qter, and 10q26.13-26.2 in glioblastomas. Deletions on 9p and 10q, and gain of 7p were associated with the unmethylated MGMT phenotype, whereas deletion of 19q and oligodendroglial morphology was associated with MGMT hypermethylation. IDH1 mutation showed positive correlation with MGMT hypermethylation and loss of 1p/19q. Our results suggest that MGMT promoter methylation, analyzed by pyrosequencing, is a frequent event in oligodendroglial tumors, and it correlates with IDH1 mutation and 19q loss in gliomas. Pyrosequencing proved a good method for assessing the degree of MGMT methylation in formalin-fixed paraffin-embedded glioma samples. However, further studies are needed to confirm a clinically relevant cut-off point for MGMT methylation in gliomas.
    Genes Chromosomes and Cancer 09/2011; 51(1):20-9. · 3.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Renal cell carcinoma (RCC) is the most common type of renal cancer in adults. RCC is notoriously resistant to current therapies suggesting the need to improve our knowledge and create more effective therapies. The molecular genetic defects that occur in RCC are extensive and complex ranging from single DNA changes, to large chromosomal defects, to signature disruptions in the transcription of hundreds of genes. These changes are often shared within each histological RCC subtype, illustrating their significance to the disease phenotype. This review presents an overview of the genetic abnormalities that occur within the most common subtypes of RCC. We discuss the recent molecular findings that have advanced our understanding of the somatic architecture of renal tumors and their impact on disease therapeutics.
    Current Oncology Reports 04/2012; 14(3):240-8. · 3.33 Impact Factor

Full-text

View
5 Downloads
Available from
May 27, 2014