Article

Ensheathing Glia Function as Phagocytes in the Adult Drosophila Brain

Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605-2324, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 05/2009; 29(15):4768-81. DOI: 10.1523/JNEUROSCI.5951-08.2009
Source: PubMed

ABSTRACT The mammalian brain contains many subtypes of glia that vary in their morphologies, gene expression profiles, and functional roles; however, the functional diversity of glia in the adult Drosophila brain remains poorly defined. Here we define the diversity of glial subtypes that exist in the adult Drosophila brain, show they bear striking similarity to mammalian brain glia, and identify the major phagocytic cell type responsible for engulfing degenerating axons after acute axotomy. We find that neuropil regions contain two different populations of glia: ensheathing glia and astrocytes. Ensheathing glia enwrap major structures in the adult brain, but are not closely associated with synapses. Interestingly, we find these glia uniquely express key components of the glial phagocytic machinery (e.g., the engulfment receptor Draper, and dCed-6), respond morphologically to axon injury, and autonomously require components of the Draper signaling pathway for successful clearance of degenerating axons from the injured brain. Astrocytic glia, in contrast, do not express Draper or dCed-6, fail to respond morphologically to axon injury, and appear to play no role in clearance of degenerating axons from the brain. However, astrocytic glia are closely associated with synaptic regions in neuropil, and express excitatory amino acid transporters, which are presumably required for the clearance of excess neurotransmitters at the synaptic cleft. Together these results argue that ensheathing glia and astrocytes are preprogrammed cell types in the adult Drosophila brain, with ensheathing glia acting as phagocytes after axotomy, and astrocytes potentially modulating synapse formation and signaling.

Download full-text

Full-text

Available from: Ozge Tasdemir Yilmaz, Jul 01, 2015
0 Followers
 · 
264 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Astrocyte-like glial cells are abundant in the central nervous system of adult Drosophila and exhibit morphology similar to astrocytes of mammals. Previous evidence has shown that astrocyte-like glial cells are strongly associated with synapses in the antennal lobe (AL), the first relay of the olfactory system, where olfactory receptor neurons (ORNs) transmit information into projection neurons (PNs). However, the function of astrocyte-like glia in the AL remains obscure. In this study, using in vivo calcium imaging, we found that astrocyte-like glial cells exhibited spontaneous microdomain calcium elevations. Using simultaneous manipulation of glial activity and monitoring of neuronal function, we found that the astrocyte-like glial activation, but not ensheathing glial activation, could inhibit odor-evoked responses of PNs. Ensheathing glial cells are another subtype of glia, and are of functional importance in the AL. Electrophysiological experiments indicated that astrocyte-like glial activation decreased the amplitude and slope of excitatory postsynaptic potentials evoked through electrical stimulation of the antennal nerve. These results suggest that astrocyte-like glial cells may regulate olfactory processing through negative regulation of ORN-PN synaptic strength. Beyond the antennal lobe we observed astrocyte-like glial spontaneous calcium activities in the ventromedial protocerebrum, indicating that astrocyte-like glial spontaneous calcium elevations might be general in the adult fly brain. Overall, our study demonstrates a new function for astrocyte-like glial cells in the physiological modulation of olfactory information transmission, possibly through regulating ORN-PN synapse strength.
    European Journal of Neuroscience 06/2014; DOI:10.1111/ejn.12646 · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glia exhibit spontaneous and activity-dependent fluctuations in intracellular Ca(2+), yet it is unclear whether glial Ca(2+) oscillations are required during neuronal signaling. Somatic glial Ca(2+) waves are primarily mediated by the release of intracellular Ca(2+) stores, and their relative importance in normal brain physiology has been disputed. Recently, near-membrane microdomain Ca(2+) transients were identified in fine astrocytic processes and found to arise via an intracellular store-independent process. Here, we describe the identification of rapid, near-membrane Ca(2+) oscillations in Drosophila cortex glia of the CNS. In a screen for temperature-sensitive conditional seizure mutants, we identified a glial-specific Na(+)/Ca(2+), K(+) exchanger (zydeco) that is required for microdomain Ca(2+) oscillatory activity. We found that zydeco mutant animals exhibit increased susceptibility to seizures in response to a variety of environmental stimuli, and that zydeco is required acutely in cortex glia to regulate seizure susceptibility. We also found that glial expression of calmodulin is required for stress-induced seizures in zydeco mutants, suggesting a Ca(2+)/calmodulin-dependent glial signaling pathway underlies glial-neuronal communication. These studies demonstrate that microdomain glial Ca(2+) oscillations require NCKX-mediated plasma membrane Ca(2+) flux, and that acute dysregulation of glial Ca(2+) signaling triggers seizures.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 01/2013; 33(3):1169-78. DOI:10.1523/JNEUROSCI.3920-12.2013 · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The central complex of the grasshopper (Schistocerca gregaria) brain comprises a modular set of neuropils, which develops after mid-embryogenesis and is functional on hatching. Early in embryogenesis, Repo-positive glia cells are found intermingled among the commissures of the midbrain, but then redistribute as central complex modules become established and, by the end of embryogenesis, envelop all midbrain neuropils. The predominant glia associated with the central body during embryogenesis are glutamine synthetase-/Repo-positive astrocyte-like glia, which direct extensive processes (gliopodia) into and around midbrain neuropils. We used intracellular dye injection in brain slices to ascertain whether such glia are dye-coupled into a communicating cellular network during embryogenesis. Intracellular staining of individual cells located at any one of four sites around the central body revealed a population of dye-coupled cells whose number and spatial distribution were stereotypic for each site and comparable at both 70 and 100% of embryogenesis. Subsequent immunolabeling confirmed these dye-coupled cells to be astrocyte-like glia. The addition of n-heptanol to the bathing saline prevented all dye coupling, consistent with gap junctions linking the glia surrounding the central body. Since dye coupling also occurred in the absence of direct intersomal contacts, it might additionally involve the extensive array of gliopodia, which develop after glia are arrayed around the central body. Collating the data from all injection sites suggests that the developing central body is surrounded by a network of dye-coupled glia, which we speculate may function as a positioning system for the developing neuropils of the central complex.
    Development Genes and Evolution 03/2012; 222(3):125-38. DOI:10.1007/s00427-012-0394-8 · 2.18 Impact Factor